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Abstract: Traveling wave combustion for a two-phase flow model that represents combustion of
oil with oxygen or air in a porous medium was discussed in [1]. The discussion was limited to
the case where the speed of the particles ahead of the combustion front is less than the fractional
oil heat capacity. In this work we discuss the other case where the speed of the particles ahead
of the combustion front is greater than the fractional oil heat capacity.

Traveling waves combustion are represented by connecting orbits of a system of three ordi-
nary differential equations that approach the nonhyperbolic equilibrium along its stable manifold
and not along its center direction. For each set of physical parameters, we prove the existence
of two distinct combustion front, with different combustion temperatures and speeds, unlike the
case discussed in [1], where there is only one. The proofs use geometric singular perturbation
theory.
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1 Introduction

The model describe the one-dimensional flow of gas and oil through a porous medium taking
into account a combustion reaction into the medium. The flow is described by state quantities
depending on x ∈ R and t ≥ 0, the space and time coordinates. They are denoted as follows:
the gas saturation is s = s(x, t) (the oil saturation is 1 − s); the absolute temperature, which
is assumed to be the same for gas, oil, and rock at each (x, t), is θ = θ(x, t); and the volume
fraction of burned gas is ε = ε(x, t).

Using balance equations, after some usual simplifications (see [1]), the model reduces to the
following system of three reaction-convection-diffusion equations,
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where α, β, γ, η, and ζ are nonnegative constants, depending on the physical properties of the
porous medium and fluids.

Typical expressions for f and q are taken as in [2].

f(s, θ) =
s2

s2 + (0.1 + θ)(1− s)2
, (4)

q(ε, θ) =(1− ε)Are
− E
θ−θ0 , if θ > θ0 or 0, if θ ≤ θ0, (5)
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where θ0 is the ignition temperature. Regarding the function h, in our analysis we only use that
it has negative values.

The following quotient called fractional oil heat capacity plays an important role in the
analysis,

ϕ =
β

α
=

ρoCo
ρoCo + ρrCr/φ

. (6)

It represents the fraction of the heat capacity of the oil as compared to the total heat capacity.
In what follows the unburned state denoted by W0 = (s0, θ0, ε = 0) will always be fixed. It

could be fixed such that f0

s0
< ϕ, f0

s0
= ϕ or f0

s0
> ϕ, where f0 = f(s0, θ0) and f0

s0
represents the

velocity of the fluid particles prior to passage of the combustion front.
Combustion fronts as traveling wave solutions of the system (1)–(3) was studied in [1] for

the case f0

s0
< ϕ. In this work we focus the case f0

s0
> ϕ, which is more realistic, as will be seen

in Section 2.
Our main result is given in Section 3. We prove in Theorem 2 the existence of two tempera-

ture values for which forward combustion fronts develop in contrast with the case f0

s0
< ϕ, where

only one temperature value exists.

2 Preliminary results

In this Section we recall some notation introduced in [1, 2, 3, 4] and the main results obtained
in [1].

We define

Ω = {g : R→ R : g ∈ C1, lim
ξ→±∞

g(ξ) exists, and lim
ξ→±∞

dg

dξ
= 0}.

Let Ωn = Ω× · · · × Ω (n times). Given X = (g1, . . . , gn) in Ωn, let

X± = lim
ξ→±∞

X(ξ) = lim
ξ→±∞

(
g1(ξ), . . . , gn(ξ)

)
= (g±1 , . . . , g

±
n ) . (7)

A traveling wave of the system (1)–(3) with speed σ, connecting a state WL = (sL, θL, εL) on
the left to a state WR = (sR, θR, εR) on the right, is a solution W (ξ) =

(
s(ξ), θ(ξ), ε(ξ)

)
in Ω3,

with ξ = x− σt, satisfying the boundary conditions

W− = WL and W+ = WR . (8)

A traveling wave that connect a burned state (ε = 1) on the left to an unburned state (ε = 0)
on the right is called a combustion wave.

Let W0 = (s0, θ0, 0) and W1 = (s1, θ1, 1) be fixed states unburned and burned, respectively. A
function W (ξ) =

(
s(ξ), θ(ξ), ε(ξ)

)
is a traveling wave of system (1)–(3) with speed σ connecting

W1 on the left to W0 on the right if and only if W (ξ) is an orbit of the system of ordinary
differential equations

ṡ =
a+ σs− f(s, θ)

h(s, θ)
, (9)

θ̇ =
1

γ
((β − σα− a)θ − ηaε+ b), (10)

ε̇ =
ζ

a
sq(ε, θ), (11)

satisfying the boundary contitions

W− = W1 and W+ = W0, (12)
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where a = f0 − σs0 and b = (f0 − β − σ(s0 − α))θ0. The speed σ and the states W0 and W1

are related by the Rankine–Hugoniot condition

σ =
f1 − f0
s1 − s0

=
(β − f0)θ0 + ηf0 − (β − f0)θ1
(α− s0)θ0 + ηs0 − (α− s0)θ1

, (13)

where f0 = f(s0, θ0) and f1 = f(s1, θ1).
We remark that, with the σ value defined by (13), the states W0 and W1 are equilibria of

(9)-(11) and the orbit defining the combustion wave leaves W1 and enters W0.
For a fixed W0 = (s0, θ0, 0) and W1(s1, θ1, 1) varying on the plane ε = 1 of the state space,

equation (13) defines a curve containing possible states of being connected to W0. Figures 2, 2
and 2, show this curve for cases f0

s0
< ϕ, f0

s0
= ϕ and f0

s0
> ϕ, respectively.

Figure 1: Curves containing possible states of being connected to W0 by a combustion wave.

Figures 2 and 2 show three temperature values, denoted by θa, θb and θc, for which there are
one, two or three possible burned states (ε = 1) that can be connected to W0 by a combustion
wave. To find the correct burned states it is necessary to study the phase portrait of ODE
system (9)–(11) depending on σ as a parameter. To do this, let us make the following change
of variable in the temperature

T =
θ − θ0
θ1 − θ0

, (14)

that transforms the interval θ0 ≤ θ ≤ θ1 to the interval 0 ≤ T ≤ 1. The variable T will play the
role of temperature. Thus, un unburned state now has the form W0 = (s0, 0, 0) and a burned
state has the form W1 = (s1, 1, 1).

To simplify the notation, from now on we denote the specific temperature of combustion θ1
only by θ.

In variables (s, T, ε) equations (9)–(12) (with θ1 changed to θ and ε1 = 1) read

ṡ = X ≡ a+ σs− f(s, (θ − θ0)T + θ0)

h(s, (θ − θ0)T + θ0)
, (15)

Ṫ = Y ≡ − b

γθ0
(T − ε), (16)

ε̇ = Z ≡ ζAr
a
s(1− ε)e

−E
(θ−θ0)T , if T > 0, or 0, if T ≤ 0, (17)

satisfying
W− = W1 and W+ = W0. (18)

The speed σ of the combustion front and consequently the constants a and b depend on
the saturation s0 and temperature θ0 of the unburned state but, only on the temperature of
combustion θ, since from (13)

σ(θ) =
A−Bθ
C −Dθ

=
B

D
+
αηs0(ϕ− f0/s0)
D2(θ − C/D)

, (19)
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where

A = (β − f0)θ0 + ηf0, B = β − f0, C = (α− s0)θ0 + ηs0, and D = α− s0. (20)

Considering θ = θc as in Figure 2 or 2, system (15)–(17) has up to six equilibria, three on
the plane ε = 1, denoted by W 1

1 = (s11, 1, 1), W 2
1 = (s21, 1, 1) and W 3

1 = (s31, 1, 1), and three on
the plane ε = 0, denoted by W 1

0 = (s10, 0, 0), W 2
0 = (s20, 0, 0) and W 3

0 = (s30, 0, 0). These states
are shown in Figure 2(a), where W 1

0 corresponds to W0 previously fixed. Figure 2(a) also shows
the surface branches where ṡ = 0, denoted by S1, S2 and S3, and the plane where Ṫ = 0 (ε = T
), denoted by Σ.
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Figure 2: (a) Equilibria W 1
0 , · · · ,W 3

1 and (b) Slope dε
dT , as a function of θ, of the unstable

manifold at V1 of system (21)- (22).

A connecting orbit of an ODE from a hyperbolic equilibrium W1 to a nonhyperbolic equilib-
rium W0 is called strong if it lies in the stable manifold of W0. If the connecting orbit corresponds
to a traveling wave of a PDE, the traveling wave is also called strong.

Numerical simulations and physical reasons as remarked in [3] indicate that only the strong
connections correspond to combustion fronts.

For the case where f0/s0 < ϕ the main results obtained in [1] are summarized in the following.
Given an initial unburnt equilibrium W 1

0 with f0/s0 < ϕ, there exists two temperatures Θ1

and Θ2, Θ1 < Θ2, such that the equilibria W 1
1 and W 2

1 (with temperature θ) can be connected
to W 1

0 by a traveling wave if and only if C/D < θ ≤ Θ2, where C and D are defined in (20).
For θ within (C/D,Θ1), the orbit enters W 1

0 tangent to the plane ε = T (this orbit is a stable
separatrix of a central manifold of W0), while for θ within [Θ1,Θ2] the corresponding orbit
enters W 1

0 tangent to the plane ε = 0. Thus, this orbit is strong.

3 Main Results

Here we consider the case where f0/s0 > ϕ. It is more realistic because assuming that a forward
combustion front exists the combustion temperature θ must be greater than the temperature θ0
of the unburned state W0. Therefore, from Eq. (13) it follows that f0/s0 > ϕ.

For each temperature θ, there are at most two burned states that can be connected to the
unburned state W 1

0 by a combustion wave, which are W 1
1 and W 2

1 .
To analyse these possible connections, we first consider combustion waves for the immobile

oil model by freezing a positive value of the saturation, which we denote by r, (0 < r ≤ 1). In
such case, system (15)–(17) reduces to
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Ṫ = Y (T, ε; θ) ≡ −b(θ)
γθ0

(T − ε), (21)

ε̇ = Z(T, ε; r, θ) ≡ χ

a(θ)
r(1− ε)e

−E
(θ−θ0)T if θ > θ0, or 0 if 0 ≤ θ ≤ θ0. (22)

This system corresponds to the case of a highly viscous oil which can be considered immobile.
There are only two equilibria of (21)-(22), V0 = (0, 0) corresponding to the unburned state

and V1 = (1, 1) corresponding to the burned state. These equilibria do not depend on the
parameters r and θ.

For each r, there is a one-parameter family of traveling waves connecting V1 to V0. One end
of this family corresponds to a strong connection (see Figure 3 ).

Let r ∈ (0, 1] be fixed. The slope dε
dT of the unstable manifold at V1, as a function of θ, has

a unique maximum point θm = θm(r) ∈
(
θ0,

C
D

)
. Just look at the graph of dε

dT as a function of
θ, Figure 2.

(a) θ = 0.420 (b) θ = 0.592 (c) θ = 0.650

Figure 3: Three possibilities for the unstable manifold of equilibrium V1 = (1, 1).

In the next theorem the parameter r is fixed in the range 0 < r0 ≤ r ≤ 1.

Theorem 1. Let θm = θm(r), there are exactly two temperatures, θ∗1 = θ∗1(r) and θ∗2 = θ∗2(r),
with θ0 < θ∗1 < θm and θm < θ∗2 <

C
D , such that the unstable manifolds of V1, εurθ∗1

and εurθ∗2
, enter

in the equilibrium V0 = (0, 0) tangent to the T -axis, that is, they are strong connections from V1
to V0.

Proof. The proof is a consequence of continuity of (X,Y ) flow with respect to parameter θ. See

Figures 4(a) and 4(b), where θ̃ and
˜̃
θ are temperature values near to θ0 and to C

D , respectively.

Let ∆ = {(T, ε) : 0 ≤ T ≤ 1; 0 ≤ ε ≤ T}. For fixed parameters r, 0 < r ≤ 1 and θ,
θ0 < θ < C

D , we denote by εsrθ the part of the stable manifold entering V0 = (0, 0) which lies in
the triangle ∆, possibly completed by a segment of the diagonal ε = T .

We denote by Srθ the cylindrical surface ε = εrθ(T ), 0 ≤ s ≤ 1, in the space (s, T, ε). We say
that this surface is generated by ε = εrθ(T ). See Figures 5(a) and 5(b), where the surfaces Srθ
are generated by the sets εrθ.

We denote by Arθ the region formed by all points (s, T, ε) located above and on the surface
Srθ , below the plane ε = T , and with 0 ≤ s ≤ 1. We also denote by Br

θ the region located below
and on the surface Srθ with ε ≥ 0, 0 ≤ T ≤ 1, and 0 ≤ s ≤ 1. These regions are indicated in
Figures 5(a) and 5(b). We now return to the system (15)–(17). Let θ∗1 = θ∗1(1) and θ∗2 = θ∗2(1) be
the temperatures as in Theorem 1, for r = 1. If θ lies in the range θ0 < θ < θ∗1 or θ∗2 < θ < C/D,
then the θ-orbit departing from W 1

1 reachs W 1
0 tangent to the plane ε = T .
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(a) θ̃ < θ∗1 < θm (b) θm < θ∗2 <
˜̃
θ

Figure 4: The unstable manifolds of V1 = (1, 1), εurθ∗1
and εurθ∗2

, are strong connections from V1
to V0 = (0, 0).
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Figure 5: (a) and (b): Cylindrical surfaces generated by the stable manifold εrθ(T ) of (0, 0).

Note that as ṡ > 0 for s = 0 the θ-orbits enter the region of interest given by 0 ≤ s ≤ 1,
0 ≤ T ≤ 1 and 0 ≤ ε < 1 along the plane s = 0. Based on this fact, let r̄ a constant value of s,
with 0 < r̄ < s11, such that ṡ is positive along the plane s = s̄.

Let θ∗1 = θ∗1(r̄) and θ∗2 = θ∗2(r̄) the temperature values as in Theorem 1. Given θ ∈ [θ∗1, θ
∗
2],

the unstable manifolds of W 1
1 and of W 2

1 do not reach the equilibrium W 1
0 , i.e., there are no

orbits connecting W 1
1 or W 2

1 to W 1
0 .

Now we define the following sets:

Ω∗1 =
{

Θ ∈ R | for θ0 < θ ≤ Θ the the θ-orbit leaving W 1
1 (or W 2

1 )

enters W 1
0 tangent to the plane ε = T

}
,

Ω∗2 =
{

Θ ∈ R | for Θ ≤ θ < θm(r̄) the θ-orbit leaving W 1
1 (or W 2

1 ) do not enter W 1
0

}
.

The Ω∗1 set is non empty and it is upper bounded by θ∗1(r̄). The Ω∗2 set is also non empty and
it is lower bounded by θ∗1(1).

Simillarly we define the sets:

Ω∗∗1 =
{

Θ ∈ R | for θm(r̄) ≤ θ < Θ the θ-orbit leaving W 1
1 (or W 2

1 ) do not enter W 1
0

}
,

Ω∗∗2 =
{

Θ ∈ R | for Θ ≤ θ < C/D the θ-orbit leaving W 1
1 (or W 2

1 )

enters W 1
0 tangent to the plane ε = T

}
.
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The Ω∗∗1 set is non empty, because θ∗2(r̄) ∈ Ω∗∗1 and it is upper bounded by θ∗2(1). The Ω∗∗2 set
is also non empty, because θ∗2(1) ∈ Ω∗∗2 it is lower bounded by θ∗2(r̄).

Thus, the following temperature values are well defined:

Θ∗1 = supΩ∗1, Θ∗2 = inf Ω∗2,

Θ∗∗1 = supΩ∗∗1 and Θ∗∗2 = inf Ω∗∗2 ,

and the following inequalities hold

θ0 < θ∗1(1) < Θ∗1 ≤ Θ∗2 < θ∗1(r̄) < θ∗m(r̄) < θ∗2(r̄) < Θ∗∗1 ≤ Θ∗∗2 < θ∗2(1) < C/D . (23)

By the continuity on the parameter θ, we have that Θ∗1, Θ∗2, Θ∗∗1 and Θ∗∗2 do not belong to
the sets Ω∗1, Ω∗2, Ω∗∗1 and Ω∗∗2 , respectively.

As a consequence of the above results, we finally have,

Theorem 2. If θ is such that Θ∗1 ≤ θ ≤ Θ∗2 or Θ∗∗1 ≤ θ ≤ Θ∗∗2 , the θ-orbit living W 1
1 (or W 2

1 )
enters W 1

0 tangent to the plane ε = 0, i.e., the θ-orbit is a strong connection from W 1
1 (or W 2

1 )
to W 1

0 .

In this work we prove the existence of two intervals for which strong connections, representing
combustion fronts, can occur in contrast to the case f0/s0 < ϕ, where only one interval was
obtained.
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