Passaging Index - Random Walks applied to complex networks

Giovanni Guarnieri Soares ${ }^{1}$
INPE, São José dos Campos, SP
Leonardo Bacelar Lima Santos ${ }^{2}$
CEMADEN, São José dos Campos, SP

Random walks are a well-known process in network science literature [1-3]. They are mathematical objects similar to the Brownian motion concept, a stochastic random process applied in interdisciplinary areas. It is interesting as a diffusion process, modeling the movement of information inside the network with a particle that can walk in any direction, independently from its previous movement.

Random Walks are stochastic processes; given a graph and a starting node, we select a neighbor of it at random and move to this neighbor; then, we select a neighbor of this node at random and move to it, repeating until we reach a certain amount of steps [1].

This work defines an index based on random walks that tells us how many times a walk goes through each node. It is a normalized measure of frequency, which we call Passaging Index. Mathematically, it is defined as

$$
\begin{equation*}
P I_{k}=\frac{\text { number of passages }}{\text { total number of steps }}, \tag{1}
\end{equation*}
$$

where $P I_{k}$ is the Passaging Index associated with node k, the number of passages is how many times the node k shows up in the walk, and the total number of steps is the walk's length. It is important to note that the entire sum of the Passaging Index has to be one so,

$$
\begin{equation*}
\sum_{k}^{N} P I_{k}=1 \tag{2}
\end{equation*}
$$

where k is each node, $P I$ is the Passaging Index, and N is the set of nodes.
We explore the Random Network model using this method, generated with $N=100$ nodes and $L=1547$ edges. After that, we plot in scatter plots comparing the Passaging Index with other complex network's indexes: degree, betweenness and mean shortest path length.

[^0]

Figure 1: Graph characteristics: $\mathrm{N}=100, \mathrm{~L}=1475$ Density $=0.3, \mathrm{~N}=100, \mathrm{~L}=1547,<c>=$ $0.3,\langle k\rangle=29.50, \mathrm{D}=2,\langle l\rangle=1.68$

In Figure 1 we observe a linear relation of this metric with others. Where in image (a) there is a strong relationship, achieving a $R^{2}=1$. As expected, the Passaging Index increases with degree, betweenness, while decreasing with the mean shortest path length. This behavior was expected since nodes with more connections attract the walker; however, such strong linearity is intriguing, leading us to think about the stochastic view of already famous metrics.

Acknowledgements

This research was partially supported by grant 420338/2018-7 of the Brazilian National Council for Scientific and Technological Development (CNPq) and by grants 2018/06205-7 and 420338/20187 of São Paulo Research Foundation (FAPESP) and DFG-IRTG 1740/2. This research was supported by CNPq grant 140196/2022-6.

References

[1] R. Burioni and D. Cassi. "Random walks on graphs: ideas, techniques and results". In: Journal of Physics A: Mathematical and General 38.8 (2005), R45.
[2] L. F. da Costa and G. Travieso. "Exploring complex networks through random walks". In: Physical Review E 75.1 (2007), p. 016102.
[3] S. Yang. "Exploring complex networks by walking on them". In: Physical Review E 71.1 (2005), p. 016107.

[^0]: ${ }^{1}$ giovanniguarnieri@id.uff.br
 ${ }^{2}$ santoslbl@gmail.com

