
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics
Preprint

Deep Neural Networks as Optimal Control Problems

Diego Dias Sobrinho1

UFRJ, Rio de Janeiro, Brazil
Rafael Benchimol Klausner
PSR Energy Consulting and Analytics, Rio de Janeiro, Brazil
Roberto Machado Velho
Sarpen Quant Investments, São Paulo, Brazil

Deep Neural networks play an important role in regression and classification problems. A new
approach [1] regards the training of such networks via optimal control problems. Let

u[j] :=
(
K [j], β[j]

)
, j = 0, . . . , N − 1, u =

(
u[0], . . . , u[N−1]

)
,

with u a combined vector of values to be determined, where K [j] is a n× n matrix of weights and
β[j] are the biases, for a network of N layers. Given the dataset (xi, zi)

m
i=1, where xi ∈ Rn are

the inputs and zi ∈ R the outputs, the training process is translated in solving the optimization
problem:

min
y,u,W,µ

m∑
i=1

∣∣∣(Wy
[N]
i + µ

)
− zi

∣∣∣2 , (1)

where W ∈ R1×n a weight vector and µ ∈ R a scalar bias, subject to the constraints

y
[j+1]
i = y

[j]
i +∆t f(y

[j]
i , u[j]), j = 0, . . . , N − 1, y

[0]
i = xi, ∆t = 1. (2)

Generally, the function f has the form f
(
y
[j]
i , u[j]

)
:= σ

(
K [j]y

[j]
i + β[j]

)
, σ denoting the activation

function. The approach to train this neural network is solving the previous discrete optimization
problem. In contrast, one regard the training as a continuous control problem. Suppose that
yi = yi(t) and u = u(t) = (K(t), β(t)), t ∈ [0, T]. Taking ẏ(t) = f (y(t), u(t)), (2) becomes the
explicit Euler method for the initial value problem ẏi (t) = f (yi(t), u(t)) , yi(0) = xi. One can see
that the optimization problem (1) is the discretization of the optimal control problem:

min
y,u,W,µ

m∑
i=1

|(Wyi(T) + µ)− zi|2 , subject to ẏi (t) = f (yi(t), u(t)) ; yi(0) = xi. (3)

The solution to (3) can be understood as a discretization method for the time evolving ordinary
differential equation (ODE) in (3), allowing us the use of multiple ODE solvers, as the classical
Runge-Kutta method.

We devised the following experiment for comparing the training of a neural network via both
approaches. We set the function g(s) = 2s + sin(2s) + 3 on the interval [0, 5] as the reference
one and from m = 251 input points si equally distributed along the previous interval, we produce
outputs zi = g(si) + ϵi, with ϵi a random Gaussian noise. The set (xi, zi)

m
i=1, xi = (si, 0, 0) ∈ R3

is the dataset of interest for our experiment. In order to fit such dataset, we choose a neural
network with n = 3 neurons per layer. We opt for N = 3 layers and the hyperbolic tangent as
activation function. Such network was trained via the classical method using the ADAM optimizer
routine contained in the package Flux.jl, while the continuous version used gradient descent with
backtracking and a forward stepper Euler Integrator with T = 3, both running 20k iterations
and implemented in Julia.2. All the parameters (weights and biases) were started with uniformly

1diegodias3468@gmail.com, rafa.bench@gmail.com, roberto.velho@gmail.com
2All the code is available at https://github.com/rafabench/OCDNN.jl

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 9, n. 1, 2022.

Trabalho apresentado no XLI CNMAC, Unicamp - Campinas - SP, 2022.

010055-1 © 2022 SBMAC

https://github.com/rafabench/OCDNN.jl

2

random inputs. In Figure 1 we compare the performance of both methods ("Neural Network" vs.
"Euler Network") regarding the decay of the loss measured via the mean-squared error (mse) -
the expression to be minimized in 1 - and the fit to the data (after 20k iterations). The Euler
Network tends to require fewer iterations than the Neural Network to achieve the same loss. Such
performance motivates the study of other numerical methods for ODEs, what we performed using
Runge-Kutta methods of order two to four (RK2, RK3, RK4). We repeat the previous regression
problem (with new randomly initial parameters) comparing such solvers and present the results
in Figure 2. The results show the trend that the higher the order of the ODE solver, the fewer
iterations are required to achieve a certain loss. Further investigation is necessary to understand
the deeper relation between the ODE solver and the necessary number of iterations to achieve
a good quality of data fit. This would contrast with the original paper [1], where the studied
classification problem did not show improvement of the fit as the ODE solver was changed.

Figure 1: Loss evolution along iterations and fit of data for the Neural and Euler networks.

Figure 2: Loss evolution along iterations and fit of data for different ODE solvers.

References
[1] Martin Benning et al. “Deep learning as optimal control problems: Models and numerical

methods”. In: Journal of Computational Dynamics 6.2 (2019), pp. 171–198.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 9, n. 1, 2022.

010055-2 © 2022 SBMAC

