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order convergence in DEM
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Abstract. The discrete element method is a technique widely used to simulate multi particle
systems, in particular granular materials. For conservative systems, the integration of the equations
of motions is often performed via a Verlet-type method of order two. However, when dissipative
forces are included, such as in simulations of granular materials, the Verlet method no longer
behaves as a second order method. For instance, when using the popular Kuwabara-Kono force
scheme, the order of the Verlet method decreases to 1.5. In this work, we propose a regularization
of the Kuwabara-Kono force model via molli�cation. We show numerically that the Verlet method
combined with this regularized force model can integrate collisions with second order accuracy and
that the coe�cient of restitution of the system tends to increase as a function of the regularization
parameter.

Keywords. Discrete Element Method, Verlet Method, Kuwabara-Kono Model, Molli�ers

1 Introduction

Consider two spherical particles, say P1 and P2, in a plane perpendicular to the direction of
gravity, in such a way that they will evolve to a purely normal collision. In this case, the collision
is free of any tangential forces and the motion of the particles is governed by Newton's second law
of motion. The DEM algorithm provides a way to determine the contact force by establishing a
relationship between the force and the overlap ξ(t) between the two particles, de�ned as

ξ(t) = R1 +R2 − |x1(t)− x2(t)|, (1)

where Ri and xi(t) denotes, respectively, the radius and position of the particle Pi, i = 1, 2. One
of the most frequent force models used in DEM is the Kuwabara-Kono force model [4], which is
given by

|Fi (t) | = kξ(t)
3/2

+ γξ′(t) ξ(t)
1/2

, (2)

where k is related to the sti�ness of the material of the particles and γ is the damping constant.
This model is widely used because it reproduces very well the behavior of normal collision of real
particles [4, 6, 7].

In DEM simulations of granular materials, Newton's second law is usually integrated in time
with Verlet methods [3]. When the force depends explicitly on the velocity, however, the Verlet
method has to be adapted so that it retains second order accuracy [8]. For an unidimensional
motion along the axis de�ned by the centers of the particles, the adapted method is given by the
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following iterative process: 

v̂n+ 1
2

= vn− 1
2
+ F

(
tn, xn, vn− 1

2

)
∆t;

x̂n+1 = xn + v̂n+ 1
2
∆t;

vn =
x̂n+1 − xn−1

2∆t
;

vn+ 1
2

= vn− 1
2
+ F (tn, xn, vn)∆t;

xn+1 = xn + vn+ 1
2
∆t;

(3)

for each of the particles and for n = 1, . . . , N .
In this work, collision simulations were assembled in such a way that both particles have no

angular motion and one of the particles is �xed, i.e. its position is not evolved in time. The center
of the other particle is placed at a distance R1 + R2 of the center of the �xed particle, with an
initial velocity of magnitude 1m/s and in the direction of the �xed particle. The simulation is
then allowed to run for 105 × 2−13 s (≈ 1.2 × 10−2 s). Two such simulations were run, one using
the Kuwabara-Kono force model given in eq. 2, with parameters given in table 1, and another one
where the purely elastic Hertz force model was used instead, i.e. γ = 0 in eq. 2. The order of the
Verlet method in eqs. 3 was determined for each of the simulations. The results are presented in
�g. 1.

Table 1: Values of the material and model parameters used to simulate a binary normal collision between
two particles.

Particles Normal Forces Simulation

ρ = 19300 kg/m3 k̃n ≈ 4.4× 1010 N/m1.5 tf − t0 = 105× 2−13 s

r = 1m γ ≈ 1.1× 109 kg/
(
m0.5s

) (
≈ 1.2× 10−2 s

)

Figure 1: Order analysis of the position of the moving particle involved in the binary normal collision.
The values of the parameters can be found in table 1. The usual Hertz model has no damping term, which
means that γ = 0 in eq. 2 in this case.

The results of the order analysis depicted in �g. 1 reveal an unexpected behavior. When the
purely elastic force model is used, the accumulated error in the position decreases as O(h2), as
it is expected when eqs. 3 is used to integrate the motion of the particle. However, when the
full Kuwabara-Kono force model is used, the curve approximating the accumulated error in the
position decreases as O(h1.5), which does not agree with the expected order of eq. 3.
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The inclusion of the dissipation term in the model penalized the order of the Verlet algorithm
given by eqs. 3. The cause of this order reduction, therefore, has to lie in the ξ1/2 term in eq. 2: at
the beginning and in the end of the collision, when ξ = 0, the derivative of the term ξ1/2 becomes
unbounded. It seems that this issue has not yet been observed nor discussed in the literature.

2 A regularized force model

In this section, we propose a regularization of the Kuwabara-Kono model given ineq. 2 based
on the concept of molli�ers. The proposed regularization removes the unboundedness of the �rst
derivative of ξ1/2 near t = 0 and allows for an order 2 convergence of the Verlet method.

2.1 Molli�ers

Let ϕ : R → R be de�ned as

ϕ (x) :=


1

C
exp

(
1

x2 − 1

)
if− 1 < x < 1;

0 otherwise,
(4)

where

C :=

∫ 1

−1

exp

(
1

x2 − 1

)
dx ≈ 0.444 (5)

is chosen such that the integral of ϕ(x) equals 1. The function de�ned by eq. 4 is called the
�standard molli�er�. [2].

For any ϵ ∈ (0,∞), one can then de�ne the real function

ϕϵ (x) :=
1

ϵ
ϕ
(x
ϵ

)
. (6)

Given f : R → R a locally integrable function, one can de�ne its ϵ-molli�cation as the convolution
of ϕϵ and f . This convolution produces a new real function denoted by ϕϵ ∗ f and which is given
by:

(ϕϵ ∗ f) (x) =
∫ ϵ

−ϵ

ϕϵ (z) f (x− z) dz. (7)

The new function originated by eq. 7 has the desired property of being in�nitely di�erentiable in R,
while being almost the same function as the original function f . The quality of the approximation
of f by ϕϵ ∗ f depends on how small ϵ is taken.

2.2 Extended square root and ϵ-shift

In order to properly calculate the integral in eq. 7, the function f must be de�ned on [−ϵ,∞).
In the case of the square root function, which is the one appearing in the dissipation term of eq.
2, this is not true. For this reason, we continuously extend the ordinary square root function to
negative numbers by making

√
x = 0 if x < 0. This extension is denoted by

√
· : R → R and will

substitute the traditional square root function from now on.
If we use the extended square root function to calculate eq. 6 we observe that the ϵ-molli�cation

of
√
· is not zero when x = 0, as illustrated in �g. 2(a). This could pose a problem for the force

model, since it would mean that a non-zero normal force would exist between two particles which
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are not in contact. A way to prevent this is to right-shift the function
√
· by ϵ. That is, for each

ϵ ∈ (0,∞), de�ne the right-shift function τϵ : R → R as

τϵ (x) = x− ϵ. (8)

Then, the ϵ-molli�cation of
√
· ◦ τϵ, which is depicted in �g. 2(b), is always zero when x = 0,

i.e. when there is no contact between the particles. For convenience of notation, from now on we
de�ne

ϵ

√
· := ϕϵ ∗

(√
· ◦ τϵ

)
. (9)

(a) (b)

Figure 2: (a) Comparison between
√
· and the ϵ-molli�cation of

√
x for di�erent values of ϵ. (b) Comparison

between
√
· and the ϵ-molli�cation of

(√
· ◦ τϵ

)
, ϵ

√
·, for di�erent values of ϵ. In both plots, the red curve

is
√
x, for comparison. Notice how all curves in (b) go through (0, 0). In both �gures, molli�cations were

computed using a composite midpoint rule with 1000 sub-intervals.

2.3 Regularized normal force model

Based on the discussion in the subsections above, we propose a regularized model for the normal
contact force in which the

√
· term in eq. 2 is substituted by ϵ

√
·, as de�ned in eq. 9. Therefore,

we obtain
|Fi (t) | = kξ(t)

3/2
+ γξ′(t) ϵ

√
ξ(t) (10)

With the removal of the singularity of the �rst derivative of ϵ

√
ξ(t) at t = 0, the error of the Verlet

method given in eqs. 3 should decay as O(h2).
We performed simulations for di�erent values of ϵ, in order to evaluate the e�ect that the

molli�cation parameter has on the overall error behavior. The results are displayed in �g. 3 and
indicate that, for all values of ϵ employed, the expected order of the damped Verlet method was
recovered, i.e. the error decrease as O(h2). In each of the plots in �g. 3, one observes the existence
of three distinct regions. The boundary between these regions is highlighted in �g. 3(a). Initially,
for larger h, we observe a region where the error, although monotonically decreasing, does not
have a clear order, then as h decreases, there is an intermediate region where the relative error
oscillates, the length of which seems to depend on ϵ, and �nally, for smaller h, a region where the
error becomes monotonically decreasing again, but now decreasing as O(h2).

The existence of these regions where the error �uctuates can be explained by the observations
made in the inset of �g. 2(b), where it is shown that ϵ

√
x and

√
x are most di�erent when x is
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(a) (b)

Figure 3: Order analyses of the damped Verlet method associated with the Kuwabara-Kono force model
where

√
· is substituted by ϵ

√
·. The physical system being simulated is a binary normal collision and the

position of one of these particles is the variable whose order is being analyzed. The values of the parameters
used in the simulations are presented in table 1.

close to zero. For values of h larger than about 2ϵ, the behavior of ϵ

√
x near 0 is never relevant

since, in the �rst step of the integration, the particle will already have crossed the region where

ϵ

√
x deviates the most from

√
x. Thus, ϵ

√
x is e�ectively very close to

√
x and the model in eq.

10 behaves almost as the original Kuwabara-Kono model in eq. 2. This is behind the rightmost
regions of the plots in �g. 3. However, as h becomes signi�cantly smaller than 2ϵ, i.e. the leftmost
regions in �g. 3, the collision of the particles is very well resolved, that is, there will be many time
steps in the region of ϵ

√
x near 0, which means that the integration of the forces near 0 will be

well resolved. In these left-most regions, the O(h2) convergence as h → 0 is observed. Finally, for
intermediary values of h, the integration of the forces will not sample ϵ

√
x near 0 enough times,

which causes the erratic behavior observed in the middle region of �g. 7(a).

Therefore, in order to e�ectively use the regularized model proposed in eq. 10, it is necessary
that the value of h belongs to the leftmost region of the plots in �g. 3, for the chosen value of ϵ.
Thus, an adequate combination of ϵ and h must be selected. To quantitatively understand how
this selection must be made, we performed order analyses for values of ϵ ranging from 5 × 10−7

to 9 × 10−5. The values of h used in these order analyses were of the form m × 2−k, where
m ∈ {1, 3, 5, 7, 15, 21, 35, 105} and k ∈ N∩ [13, 27]. We choose these values of m so that h is exactly
represented as a double precision �oating point number, while the total integration time, which
must divide all of the possible values of h, is kept relatively low. For each of these analyses, we
selected the biggest value of h, called hϵ, such that the error decreases as O(h2) for all h < hϵ.
The results are presented in �g. 4. Any pair (ϵ, hϵ) below the solid line is a valid choice for which
the regularized model in eq. 10 integrated with eqs. 3 will produce an (expected) O(h2) decay of
the error.

3 Conclusion

In this work, we have identi�ed that, contrary to the expected, the order of the Verlet method,
widely used in DEM simulations of granular materials, is not 2 when the model for the normal
force used is the Kuwabara-Kono force model. Instead, the convergence of the Verlet method has
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Figure 4: Computed value of hϵ as a function of ϵ. The dashed line is the best �t of the data to a power
law, while the solid line is �safe� choice for h based on all values of ϵ tested. The values of the parameters
used in the simulations are presented in table 1.

order 1.5. This is due to the fact that, in this model, there is a square-root factor linked to the
dissipative term that has a singular derivative at the beginning and in the end of particle collisions.

We have proposed a regularized force model, based on an extension of the Kuwabara-Kono
model, in which the square-root function appearing in the dissipation term is replaced by a molli�ed
square-root function. This molli�ed function, which is in�nitely di�erentiable, allows for an actual
order 2 integration of the equations of motion in DEM with the Verlet method.
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