Trabalho apresentado no XLI CNMAC, Unicamp - Campinas - SP, 2022.

**Proceeding Series of the Brazilian Society of Computational and Applied Mathematics** Preprint

# Análise de Mecanismos de Controle populacional via Transformadas Integrais Generalizadas

Maiquison S. Friguis<sup>1</sup> IFF, Cabo Frio, RJ Diego C. Knupp<sup>2</sup>, Antônio José da S. Neto<sup>3</sup> IPRJ/UERJ, Nova Friburgo, RJ

**Resumo**. Ecossistemas são estruturas complexas e ao mesmo tempo muito frágeis a ações externas. Quando a ação humana não é bem planejada e executada pode provocar desiquilíbrio ambiental que muitas vezes leva a explosão de populações que podem atuar como vetores de doenças. Objetivando o controle dessas populações modelar mecanismos de controle populacional tem grande relevância para implementação de políticas públicas de combate e prevenção de doenças transmitidas por vetores. Neste trabalho a remoção por armadilhas locais e a predação são considerados como mecanismos de controle populacional, sendo modelados por um sistema de equações deferenciais parciais de segunda ordem em um domínio bidimensional com solução formulada e obtida através do formalismo da Técnica de Transformadas Integrais Generalizadas.

Palavras-chave. Presa-Predador, Populações Difusivas, Transformada Integral

#### 1 Introdução

Um ecossistema é uma estrutura complexa que além de envolver componentes físico-químicos como ar, água e solo também lida com seres vivos como plantas e animais, considerando escalas macro e microscópicas, e por se tratar de uma rede complexa de interações, tem equilíbrio muito frágil podendo ser facilmente alterado pela mais variadas atividades humanas. Situações de desiquilíbrio ambiental tendem a levar a explosão demográfica de espécies, que antes viviam em perfeita harmonia com o meio ambiente, a atuarem como vetores de doenças como Dengue, Chikungunya, Febre Zika, Febre Amarela entre outras [1]. Buscando diminuir os efeitos de explosões demográficas indevidas, considerando principalmente de vetores de doenças, muitas vezes pode ser empregado o uso de mecanismos de controle para redução ou até mesmo extermínio completo dessas populações. Dessa forma, entender como se dá a dinâmica de populações na presença de mecanismos de controle pode ser de grande ajuda na implementação de políticas publicas de combate a vetores de doenças.

Considerando a modelagem de mecanismos de controle podem-se destacar as armadilhas locais [2] e efeitos de competição interespecífica do tipo presa-predador [3]. Nesse trabalho é apresentado um modelo de dinâmica populacional bidimensional do tipo presa-predador com locais de abate em pontos discretos do domínio que afetam apenas a população de presas. Para solução do sistema difusivo envolvido é desenvolvida uma solução híbrida utilizando a Técnica de Transformadas Integrais Generalizadas (GITT) [4].

 $<sup>^1{\</sup>rm maiquison@hotmail.com}$ 

<sup>&</sup>lt;sup>2</sup>diegoknupp@iprj.uerj.br

<sup>&</sup>lt;sup>3</sup>ajsneto@iprj.uerj.br

2

#### 2 Formulação e Solução do Problema

Considere uma população de presas u e uma população de predadores v com competição interespecífica definidas em um domínio  $V = [0, L_1] \times [0, L_2]$  com superfície de contorno S, dispersão governada pela lei de Fick e locais de abate com intensidade constante que afetam apenas a população de presas. Considerando o modelo descrito por [5], tem-se:

$$\frac{\partial u}{\partial t} = D_u \nabla \cdot (\nabla u) + R_0 u \left(1 - \frac{u}{K}\right) - \frac{Euv}{F+u} - d(\mathbf{x}, t, u), \quad \mathbf{x} \in V, \quad t > 0$$

$$\frac{\partial v}{\partial t} = D_v \nabla \cdot (\nabla v) + S_0 v \left(1 - Q\frac{v}{u}\right), \quad \mathbf{x} \in V, \quad t > 0$$
(1)

onde:

- $D_u \in D_v$  são, respectivamente, os coeficientes de difusão de presas e predadores.
- $R_0 \in S_0$  são as taxas de crescimento intrínseco de presas e predadores, respectivamente.
- E é a taxa máxima de consumo por cada predador, ou seja, o número máximo de presas que podem ser consumidas por um único predador em cada instante t.
- F é o número de presas necessárias para atingir metade da taxa máxima E.
- Q é uma medida da qualidade do alimento que a presa fornece para a conversão em nascimentos de predadores.
- K é a capacidade de carga ambiental das presas i.e. a quantidade máxima de recursos que a presa pode retirar do ambiente [6].
- d(.) é uma função que modela o abate.

Note que, embora o crescimento da população de predadores seja do tipo logístico sua capacidade de carga ambiental é substituída por uma capacidade proporcional à abundância de presas  $\frac{1}{\Omega}u$ . As condições de contorno e iniciais são:

$$\frac{\partial u}{\partial \mathbf{n}} = 0 \quad ; \quad \frac{\partial v}{\partial \mathbf{n}} = 0, \quad \mathbf{x} \in S, \quad t > 0 \tag{2}$$

$$u(\mathbf{x}, 0) = u_0(\mathbf{x}) \quad e \quad v(\mathbf{x}, 0) = v_0(\mathbf{x})$$
 (3)

Considerando o formalismo da GITT utiliza-se as versões homogêneas lineares para cada uma das populações e escolhe-se o problema de autovalor mais adequado. Assim, considerando autofunções bidimensionais com seus respectivos autovalores reordenados pode-se escrever os pares de transformação:

Transformada : 
$$\overline{u}_i(t) = \int_0^{L_2} \int_0^{L_1} \widetilde{\psi}_i(x, y) u(x, y, t) dx dy$$
  
Inversa :  $u(x, y, t) = \sum_{i=1}^\infty \widetilde{\psi}_i(x, y) \overline{u}_i(t)$ 
(4)

para a população de presas, e:

Transformada: 
$$\overline{v}_i(t) = \int_0^{L_2} \int_0^{L_1} \widetilde{\phi}_i(x, y) v(x, y, t) dx dy$$
 (5)

Inversa :

$$v(x, y, t) = \sum_{i=1}^{\infty} \widetilde{\phi}_i(x, y) \overline{v}_i(t)$$

para a população de predadores. Que em conjunto com os operadores

$$\int_{0}^{L_2} \int_{0}^{L_1} \psi_i(x, y) (.) \, dx dy \quad \text{e} \quad \int_{0}^{L_2} \int_{0}^{L_1} \phi_i(x, y) (.) \, dx dy \tag{6}$$

transformam o problema original em:

$$\frac{d\overline{u}_i(t)}{dt} + \lambda_i^2 \overline{u}_i(t) = \overline{G}_i(t, \overline{\mathbf{u}}, \overline{\mathbf{v}})$$
(7a)

$$\frac{d\overline{v}_i(t)}{dt} + \omega_i^2 \overline{v}_i(t) = \overline{H}_i(t, \overline{\mathbf{u}}, \overline{\mathbf{v}})$$
(7b)

onde  $\lambda_i$  e  $\omega_i$  são autovalores de  $\widetilde{\psi}_i(x,y)$  e  $\widetilde{\phi}_i(x,y)$ , respectivamente e:

$$\overline{\mathbf{u}} = \{\overline{u}_1, \overline{u}_2, \dots, \overline{u}_N\} \quad \text{e} \quad \overline{\mathbf{v}} = \{\overline{v}_1, \overline{v}_2, \dots, \overline{v}_N\}$$
(8)

com os termos fonte transformados dados por:

$$\overline{G}_{i}(t, \overline{\mathbf{u}}, \overline{\mathbf{v}}) = \overline{G}_{i,1}(t, \overline{\mathbf{u}}, \overline{\mathbf{v}}) + \overline{G}_{i,2}(t, \overline{\mathbf{u}}, \overline{\mathbf{v}}) + \overline{G}_{i,3}(t, \overline{\mathbf{u}}, \overline{\mathbf{v}}) 
\overline{H}_{i}(t, \overline{\mathbf{u}}, \overline{\mathbf{v}}) = \overline{H}_{i,1}(t, \overline{\mathbf{u}}, \overline{\mathbf{v}})$$
(9)

com:

$$\overline{G}_{i,1} = \int_0^{L_2} \int_0^{L_1} \widetilde{\psi}_i(x,y) R_0 \sum_{j=1}^N \overline{u}_j(t) \widetilde{\psi}_j(x,y) \left( 1 - \frac{1}{K} \sum_{j=1}^N \overline{u}_j(t) \widetilde{\psi}_j(x,y) \right) dxdy \tag{10}$$

$$\overline{G}_{i,2} = -\int_0^{L_2} \int_0^{L_1} \widetilde{\psi}_i(x,y) \left( \frac{E\sum_{j=1}^N \overline{u}_j(t)\widetilde{\psi}_j(x,y)\sum_{j=1}^N \overline{v}_j(t)\widetilde{\phi}_j(x,y)}{F + \sum_{j=1}^N \overline{u}_j(t)\widetilde{\psi}_j(x,y)} \right) dxdy \tag{11}$$

$$\overline{G}_{i,3} = -\int_0^{L_2} \int_0^{L_1} \widetilde{\psi}_i(x,y) d(x,y,t,u) dx dy$$
(12)

$$\overline{H}_{i,1} = \int_0^{L_2} \int_0^{L_1} \widetilde{\phi}_i(x,y) S_0 \sum_{j=1}^N \overline{v}_j(t) \widetilde{\phi}_j(x,y) \left( 1 - \frac{Q \sum_{j=1}^N \overline{v}_j(t) \widetilde{\phi}_j(x,y)}{\sum_{j=1}^N \overline{u}_j(t) \widetilde{\psi}_j(x,y)} \right)$$
(13)

O sistema acima, formado pelas Equações (10-13), fica acoplado e para fins computacionais o sistema de EDO's pode ser truncado em uma ordem suficientemente grande para a precisão requerida, e numericamente resolvido para os potenciais transformados  $\bar{u}_i(t) \in \bar{v}_i(t)$ , para i = 1, ..., N.O sistema infinito acoplado obtido é truncado em uma ordem N e solucionado numericamente através da rotina *NDSolve* do software Mathematica. Buscando reduzir o custo computacional da solução bidimensional via GITT foi introduzido um modelo de baixa ordem [7].

#### 4

#### **3** Resultados

Considerando quatro armadilhas com intensidade constante B com centros  $(x_j, y_j)$  posicionadas conforme Tabela 1.

| Tabela 1 | <u>Centro</u> d | los Lo  | <u>cais d</u> e | e Abate. |
|----------|-----------------|---------|-----------------|----------|
|          | Posição         | x       | y               |          |
| -        | P1              | 0,3     | 0,3             |          |
|          | P2              | $0,\!3$ | 0,7             |          |
|          | P3              | 0,7     | 0,3             |          |
|          | P4              | 0,7     | 0,7             |          |

as quais foram modeladas considerando a função:

$$d(x, y, t, u) = \sum_{j=1}^{N_{cs}} B_j u(x_j, y_j, t) f(x, y)$$
(14)

onde

$$f(x,y) = \frac{1}{\pi\sigma} exp\left(-\left(\frac{(x-x_j)^2}{\sigma} + \frac{(y-y_j)^2}{\sigma}\right)\right)$$
(15)

 $\cos \sigma = 0,006.$ 

Considerando a estabilidade apresentada em [8] foram adotados os parâmetros para solução do problema direto envolvendo o modelo de duas populações conforme Tabela 2.

Tabela 2: Valores utilizados para solução do problema direto com duas populações.

| $D_u$ | $D_v$  | $R_0$    | K | E     | F | $S_0$     | Q        | B         |
|-------|--------|----------|---|-------|---|-----------|----------|-----------|
| 0,001 | 0,0001 | $0,\!01$ | 1 | 0,005 | 1 | $0,\!001$ | $^{0,1}$ | $0,\!001$ |

Para verificar a eficiência da GITT na solução do problema dado pelas Eqs.(1-3), analisou-se a convergência da solução com respeito a ordem de truncamento N considerando o modelo completo e o modelo aproximado. Nas Tabelas 3 e 4 são apresentadas as convergências das densidades populacionais de presas e predadores onde pode-se observar que a ausência de abate para a população de predadores faz com que a solução tenha uma precisão de três casas decimais quando comparada a menor e maior ordem de truncamento. Por outro lado para a população de presas a solução tem um desempenho inferior visto que apenas consegue uma precisão de duas casas decimais.

Tabela 3: Convergência da solução modelo completo com y = 0, 2 e t = 50.

|     |          | u(x, y, t) |          |          | v(x, y, t) |          |
|-----|----------|------------|----------|----------|------------|----------|
| N   | x = 0, 2 | x = 0, 4   | x = 0, 5 | x = 0, 2 | x = 0, 4   | x = 0, 5 |
| 30  | 0,7596   | 0,7374     | 0,7431   | 1,0450   | 1,0449     | 1,0449   |
| 50  | 0,7696   | 0,7467     | 0,7707   | 1,0451   | 1,0450     | 1,0451   |
| 70  | 0,7673   | 0,7478     | 0,7678   | 1,0451   | 1,0450     | 1,0451   |
| 90  | 0,7674   | 0,7480     | 0,7676   | 1,0451   | 1,0450     | 1,0451   |
| 130 | 0,7580   | 0,7356     | 0,7416   | 1,0450   | 1,0449     | 1,0449   |

|     |          | u(x, y, t) |          |            | v(x,y,t)   |            |
|-----|----------|------------|----------|------------|------------|------------|
| N   | x = 0, 2 | x = 0, 4   | x = 0, 5 | x = 0, 2   | x = 0, 4   | x = 0, 5   |
| 30  | 0,2567   | 0,2462     | 0,2476   | 1,4202     | 1,4148     | 1,4144     |
| 50  | 0,2643   | 0,2535     | 0,2613   | 1,4229     | $1,\!4177$ | 1,4179     |
| 70  | 0,2638   | $0,\!2541$ | 0,2605   | 1,4229     | $1,\!4179$ | $1,\!4180$ |
| 90  | 0,2638   | 0,2542     | 0,2605   | $1,\!4230$ | $1,\!4179$ | 1,4180     |
| 130 | 0,2544   | 0,2439     | 0,2455   | 1,4191     | 1,4136     | 1,4132     |

Tabela 4: Convergência da solução modelo completo com y = 0, 2 e t = 500.

Por outro lado, para a convergência utilizando o modelo aproximado, pode-se observar nas Tabelas 5 e 6 que quando comparado ao modelo completo tem-se uma precisão reduzida para apenas uma casa decimal, porém como observa-se na Tabela 7, a redução do custo computacional, em segundos, foi superior a 97% mostrando que a solução aproximada é viável sacrificando parte da precisão.

Tabela 5: Convergência da solução modelo aproximado com y = 0, 2 e t = 50.

|          |          | u(x, y, t) |          |          | v(x, y, t) |          |
|----------|----------|------------|----------|----------|------------|----------|
| N        | x = 0, 2 | x = 0, 4   | x = 0, 5 | x = 0, 2 | x = 0, 4   | x = 0, 5 |
| 50       | 0,7622   | 0,7307     | 0,7589   | 1,0451   | 1,0451     | 1,0451   |
| 90       | 0,7616   | 0,7352     | 0,7545   | 1,0451   | 1,0451     | 1,0451   |
| 150      | 0,7620   | 0,7360     | 0,7523   | 1,0451   | 1,0451     | 1,0451   |
| 200      | 0,7621   | 0,7357     | 0,7529   | 1,0451   | 1,0451     | 1,0451   |
| Completo | 0,7580   | 0,7356     | 0,7416   | 1,0450   | 1,0449     | 1,0449   |

Tabela 6: Convergência da solução modelo aproximado com y = 0, 2 e t = 500.

|          |          | u(x,y,t) |          |          | v(x, y, t) |          |
|----------|----------|----------|----------|----------|------------|----------|
| N        | x = 0, 2 | x = 0, 4 | x = 0, 5 | x = 0, 2 | x = 0, 4   | x = 0, 5 |
| 50       | 0,2373   | 0,2257   | 0,2340   | 1,4070   | 1,4070     | 1,4070   |
| 90       | 0,2372   | 0,2271   | 0,2326   | 1,4070   | 1,4070     | 1,4070   |
| 150      | 0,2373   | 0,2273   | 0,2319   | 1,4070   | 1,4070     | 1,4070   |
| 200      | 0,2373   | 0,2272   | 0,2321   | 1,4070   | 1,4070     | 1,4070   |
| Completo | 0,2544   | 0,2439   | 0,2455   | 1,4191   | 1,4136     | 1,4132   |

Tabela 7: Tempo Computacional da solução.

| Ν  | Aproximado $(s)$ | Completo (s) |
|----|------------------|--------------|
| 30 | 1,09             | 46,95        |
| 50 | 2,38             | 190,50       |
| 70 | $4,\!67$         | 464,05       |
| 90 | 5,09             | 985,75       |

Para comparar os efeitos que a predação exerce sobre a solução do problema descrito pelas Eqs.(1-3), pode-se fazer E = F = 0 para desprezar os efeitos da competição na população de presas.

6

Na Figura 1 é exibido o comportamento transiente da densidade de presas, com e sem predação. Note que a predação é responsável por uma redução, em média, de aproximadamente 11% da população de presas quando comparara-se o comportamento em relação ao tempo. Por outro lado, considerando o comportamento longitudinal com y = 0, 2 tem-se uma redução percentual, em média, de 0,24% para t = 50, 62% para t = 250 e 159% para t = 500(veja Figura 2).



Figura 1: Comportamento transiente da densidade de presas. Fonte: O autor.



Figura 2: Comportamento longitudinal da densidade de presas. Fonte: O autor.

#### 4 Considerações Finais

O desequilíbrio ambiental pode ser uma fonte imensa de problemas e um deles é o crescimento desordenado de populações que podem atuar como vetores de doenças. Objetivando estudar o comportamento de competição e remoção por armadilhas foi utilizado um modelo bidimensional difusivo do tipo presa-predador e por conta da não linearidade proveniente desse tipo de modelo foi implementada uma solução via Transformadas Integrais Generalizadas, onde pode-se observar que a predação funciona como um bom mecanismo de controle populacional fornecendo uma redução considerável na densidade de presas. Ainda, considerando a solução proposta foi implementada uma solução aproximada com custo computacional baixo quando comparado a solução considerada completa, possibilitando que futuramente seja abordadas rotinas que necessitam de grande número de avaliações de uma função objetivo baseada na solução deste problema.

## Agradecimentos (opcional)

Os autores agradecem o apoio financeiro do Instituto Federal Fluminense, da Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, do Conselho Nacional de Desenvolvimento Científico e Tecnológico e da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Código de Financiamento 001).

### Referências

- [1] L. A. da Silva et al. "a influência do desequilibrio ambiental sobre as doenças transmitidas por Aedes aegypti". Em: Educação Ambiental em ação 17.66 (2018).
- [2] R.R.L Simons e S. A Gourley. "Extinction criteria in stage-structured population models with impulsive culling". Em: **SIAM Journal on Applied Mathematics** 66.6 (2006), pp. 1853–1870.
- [3] C. Wang e S. Qi. "Spatial dynamics of a predator-prey system with cross diffusion". Em: Chaos, Solitons & Fractals 107 (2018), pp. 55–60.
- [4] R. M. Cotta. Integral transforms in computational heat and fluid flow. CRC Press, 2020.
- [5] R. M. May. "Qualitative stability in model ecosystems". Em: Ecology 54.3 (1973), pp. 638-641.
- [6] N. Bacaër. "Verhulst and the logistic equation (1838)". Em: A short history of mathematical population dynamics. Springer, 2011, pp. 35–39.
- [7] M. S. Friguis et al. "Inverse Population Dynamics Problem Employing a Low Cost Integral Transform Solution and Bayesian Inference with Approximation Error Model". Em: International Journal of Applied and Computational Mathematics 7.5 (2021), pp. 1–25.
- S. Hsu e T. Huang. "Global stability for a class of predator-prey systems". Em: SIAM Journal on Applied Mathematics 55.3 (1995), pp. 763–783.

7