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Applications of Randers metric to track the paths through
which the fire surrounds the power transmission lines

Hengameh R. Dehkordi1
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Abstract. We utilize Randers geometry to model the propagation of fire waves, deriving the equa-
tions for paths surrounding power transmission lines in a flat terrain during a wildfire outbreak with
varying wind patterns. These paths, known as strategic paths, can play a critical role in managing
firefighting strategies. By identifying these paths, we can allocate firefighters and resources to spe-
cific locations instead of trying to cover a large area. This approach enables us to predict the path
of the fire toward the transmission lines, thus reducing the time and cost of firefighting operations.
We demonstrate the effectiveness of our approach using MATLAB by simulating two hypothetical
wildfire scenarios.
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1 Introduction
Wildfires damage human properties and assets, in particular, the transmission lines of the power

system. In this work, we analyze wildfire propagation under the presence of space-varying wind on
flat lands. We obtain equations of the paths through which the fire surrounds and calculate the
time when the fire reaches the transmission lines. We call these paths the strategic paths.

One of the pioneering works concerning the study of fire propagation was done by Anderson [1].
Anderson in [1] presented the ellipse equations and applied Huygens’ principle to find the fire fronts
and the propagation model. Richard [11] derived a non-linear first-order system of equations for
wildfire propagation with varying fuel. He introduced the simulators in which he used the solution
to his first-order system and applied Huygens’ principle to find wildfire propagation [12]. In [10],
the author showed that the equations derived in [11] are the geodesics of a Finsler metric associated
with the propagation. He also showed that using Finsler geodesics is a better approach to finding a
more accurate propagation model and proved the validity of Huygens’ principle for Finsler spaces
of dimension two. Then, in [7], the authors showed the validity of Huygens’ principle for Finsler
spaces of every dimension and used the Finsler geodesics to find the wave propagation. In [5], by
using the Randers geodesic, the equations of fire fronts and wave rays are derived. The authors
in [javaloyes2021general] provide a more general model inspired by Matsumoto metric to take
into account the slope of the terrain in a wildfire.

Finsler geometry is a strong tool to investigate the situations in anisotropic or nonhomogeneous
media and has recently been used to study the wave propagation [5–7, 10]. Here, we use an essential
class of Finsler metrics, Randers, to analyze wildfire behavior. The strategic paths are the geodesics
of Randers metric associated with the propagation that obey some special conditions [5].

The main contribution of this work is the presentation of the equation of the strategic paths
based on mathematical approaches. Discovering strategic paths is beneficial to allocate the equip-
ment properly and would reduce the losses due to fire. Moreover, one may find the best locations
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of the barriers to block the fire across strategic paths before it surrounds the transmission lines.
The problem of finding the barriers to block the fire toward some special direction is well-known
as the blocking problem [4].

We study the cases in which the terrain is flat, and the fuel, temperature, humidity, etc., have
been distributed smoothly across it. We consider different cases for the wind blowing across space
and study each case separately. We assume that no two fire rays meet and the space across which
the fire is spreading is a smooth manifold, for instance, an open subset of the Euclidean space.
The first step in studying the propagation is finding the equation of a rotated ellipse [5]. We then
find the angle of rotation and axes of the ellipse from the experimental data. Next, one needs to
find the metric and wave rays equations from the ellipse equation and, the strategic paths. In this
work, by a wave ray, we mean the path of a particle of fire, and a fire front is the perimeter of the
area burnt by the fire. If the fire starts from a single point, the fire front is called a spherical fire
front. Although, the results of this work are valid for the space of each dimension, due to possible
applications, we concentrate on dimension two.

The rest of this work is structured as follows. Section 2 provides relevant background, including
prior results that we need to establish our developments. What follows in Section 3 is the main
results of this work. Section 4 addresses the application of the results by simulating the hypothetical
wildfire propagation in MATLAB environment, and we provide the concluding remarks and give
some suggestions for future works in Section 5.

2 Preliminaries

We recall some concepts of mathematics that we require to establish our results. For more
details, see [13].

Let M be a smooth manifold of dimension 2, for instance M is an open subset of R2, p = (x, y)
a point in M , TpM the space of all vectors tangent to M at p, and TM the collection of all
vectors tangent to M ; TM = {(p, V ) : p ∈ M andV ∈ TpM}. Assume that V = (u, v) ∈ TpM
is a vector according to the canonical basis { ∂

∂x ,
∂
∂y} for TpM . A Riemannian metric on M

is a smooth function h that to each point p ∈ M , h assigns a positive-definite inner product
hp : TpM × TpM → R. Given a Riemannian metric h and a smooth vector field W on M that
h(W,W ) < 1, the function F : TM → R

F (V ) =

√
h2(W,V ) + λh(V, V )

λ
− h(W,V )

λ
, (1)

where λ = 1 − h(W,W ) is called a Randers metric [3] and the pair (M,F ) is a Randers space.
The length of each piece-wise smooth curve γ : [0, 1] −→ M on the Randers space (M,F ) is
L[γ] :=

∫ 1

0
F (γ′(t))dt. Given two points p and q in the Randers space (M,F ) , the distance from

p to q is

d(p, q) := inf
γ

∫ 1

0

F (γ′(t))dt, (2)

where we take the infimum over all piecewise smooth curves γ : [0, 1] −→ M joining p to q. A
smooth curve in a Randers space is called a geodesic if it is locally the quickest time route joining
any two nearby points on this curve. Given a Randers space (M,F ), the Randers geodesics are
solutions of [13]

d2xr

dt2
+

1

2

2∑
l,k,j=1

grl(
∂glk
∂xj

+
∂glj
∂xk

− ∂gkj
∂xl

)
dxj

dt

dxk

dt
= 0, r = 1, 2, (3)
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where [grj ] =
1
2

∂2F 2

∂vr∂vj
, [grj ] is the inverse matrix of [grj ], (v1, v2) = (u, v), and (x1, x2) = (x, y).

Likewise, given a Riemannian space (M,h), the Riemannian geodesics are solutions of [8]

d2xr

dt2
+

1

2

2∑
l,k,j=1

hrl(
∂hlk

∂xj
+

∂hlj

∂xk
− ∂hkj

∂xl
)
dxj

dt

dxk

dt
= 0, r = 1, 2, (4)

where [hrj ] is the inverse matrix of [hrj ] and (x1, x2) = (x, y). Given a vector field W , the smooth
function φ(t, p) : [0, 1] × M → M is called the flow of W if at each point p, φ(0, p) = p and
dφ
dt (t, p) = W (φ(t, p)). The vector field W = (W 1,W 2) is called Killing if for all r, j = 1, 2,

2∑
k=1

(W k ∂hrj

∂xk
+ hkj

∂W k

∂xr
+ hrk

∂W k

∂xj
) = 0. (5)

For wildfire propagation, we need to calculate the ellipse equation to obtain the Rieman-
nian/Randers metric and then the propagation model. At each point, p, the semi-axes of the
ellipse are a and b, and the ellipse is rotated with the angle θ around the origin in the clockwise
direction. The ellipse equation on M is [5]

Q((u, v), (x, y)) = (
u cos θ − v sin θ

a
)2 + (

u sin θ + v cos θ

b
)2 = 1, (6)

where θ(x, y), a(x, y), and b(x, y) are smooth functions on M , that for the sake of clarity are
written as θ, a, and b, and determined from the experimental data. From Eq. 6, we calculate the
Riemannian metric by

h(x, y) =
1

2
HessQ :=

1

2
[Qv1v2 ], (7)

where (v1, v2) = (u, v) and Qvi is the partial derivative of Q with respect to vi, i = 1, 2. Finally,
the Randers metric associated with the propagation is calculated by Eq. (1). We recall Theorems
2.1 and 2.2 from [5] that are used to establish our result.

Remark 2.1. It is worth mentioning that performing the calculations in Eq. (3) is much more
complicated than the same job in Eq. (4). Because, in order to obtain system of Eq. (3), one first
needs to find the expression of F 2- in which the square root of the Riemannian metric appears;
Then, one calculates the second order partial derivatives of F 2 and obtains gij, and finally the first
order partial derivatives of gij to get the system of Eq. (3). Therefore, in the literature, researchers
have always tried to find a Riemannian metric associated with the Finsler metric.

Theorem 2.1. A wildfire spreads in M , the fuel, temperature, humidity, etc. change smoothly in
M , the Killing wind W blows, and A is the fire front at time 0. Then:

(i) The wave ray from each p ∈ A is φ(t, α(t)), where φ is the flow of W and α is the solution of
Eq. (4) with initial condition α(0) = p, ||α′(t)||h = 1, and dφpα

′(0) ⊥
h
A. Here, h = 1

2HessQ

and

Q(u, v, w) = (
u

a
)2 + (

v cos θ − w sin θ

b
)2 + (

v sin θ + w cos θ

c
)2 = 1, (8)

(ii) The fire front at time τ is {φ(τ, α(τ)) : α(0) ∈ A }.

(iii) Given each area B, the strategic path toward B is φ(t, α(t)) such that φ(τ, α(τ)) = q. Here,
τ is the time when the fire reaches B and q is the point of arrival.
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Theorem 2.2. A wildfire spreads in M , the fuel, temperature, humidity, etc. are distributed
smoothly, the smooth vector field wind W blows, and A is the fire front at time 0. Then:

(i) The wave rays are solutions γ(t) of system (3) such that γ′(0) ⊥
F
A and F (γ′) = 1. Here, F

is the Randers metric (1).

(ii) The fire front at time τ is {γ(τ) : γ(0) ∈ A }.

(iii) Given each area B, the strategic path that meets B is the wave ray γ(t) for which γ(τ) = q.
Here, τ is the time when the fire front intersects B for the first time and q is the point of
intersection.

The following section establishes the main results to give the strategic paths.

3 Main results
Here, we assume that a wildfire spreads in a flat land M , M is an open subset of the Euclidean

space, and the transmission lines of the power system are located in the region within some distance
of the fire. The fuel, temperature, humidity, etc., have been distributed smoothly across the space,
and a wind W , a smooth vector field, is blowing. We consider the point of initiating fire, that is
the fire front at time 0, as the origin of the coordinate system. We aim to give the time when the
fire surrounds the power system’s transmission line and the path through which the fire reaches
the line. We consider two cases for the wind: constant wind and space-dependent wind. For each
case, we give the equations of strategic paths that reach the transmission line.

Theorem 3.1. Assume that a wildfire spreads across a flat land M and the wind W blows. Then:

1. If W is constant satisfying

2∑
k=1

W k ∂hrj

∂xk
= 0, (9)

for all r, j = 1, 2, the strategic path is γ(t) = tW + α(t), where α(t) is the solution of system
4;

2. If W is Killing, the strategic path is γ(t) = φ(t, α(t)), where φ is the flow of W and α(t) is
the solution of system 4;

3. If W is not Killing, the strategic path is γ(t), where γ(t) is the solution of system 3;

provided that, in all of the cases, we have

i. γ(0) = 0,

ii. ||γ′(0)−W ||h = 1,

iii. γ(τ) = q.

Here, τ is the time once the perimeter of the burnt area, that is the set

{γ(τ) : γ(0) = 0, ||γ′(0)−W ||h = 1}, (10)

meets the transmission line and q is the point(s) of intersection of {γ(τ)} and the transmission
line.
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Proof. From the experimental data, we obtain the equation of ellipse by Eq. (6), and from the
ellipse, the Riemannian and Randers metrics are obtained by Eqs. (7) and (1), respectively.
According to Theorems 2.1 and 2.2, we first need to find the equation of wave rays to obtain the
strategic path.

If the wind is constant and satisfies the Eq. 9, then is it a constant Killing vector field. Hence
one applies the Theorem 2.1 to encounter the wave rays. It is not difficult to see that the flow
of W is φ(t, p) = tW + p, for every point p of M . Accordingly, the wave ray initiating from p is
γ(t) = φ(t, α(t)) = tW + α(t), where α is a solution of system Eq. 4 provided that α(0) = 0 and
||α′(t)||h = 1. From two last equalities we have γ(0) = 0 and ||γ′(0)−W ||h = 1. Next, we assume
that B is the transmission line of power system, the set {τW + α(τ)} is the fire front that meets
B, and q = B ∩ {τW + α(τ)}. Therefore, item (iii) of Theorem 2.1 concludes the proof of item 1.

For items 2. and 3., one follows an argument similar to above and applies Theorems 2.1 and
2.2.

Example 3.1. Here, we simulate a hypothetical wildfire that spreads in woodland in Shanxi
province in China and take the data and figures from [5]. We consider two different cases for
the wind and ambient conditions. First, a constant wind toward the southeast blows whose speed
is 4m/s for which the data are a = 9.8 and b = 3.98, and θ = π/4. In the second case, the speed
of wind is .5m/s toward the east and a = 5/2, b = 1, and θ = 1−y

2 . Figs. 1a and 1b, respectively,
depict these two cases.

For the first case, the matrix of the Riemannian metric is

ℏ =

(
0.0368 0.026
0.026 0.0367

)
.

One, by applying item 1. of Theorem 3.1 and finding the set 10, finds out that the fire reaches the
transmission line after 25.21 minutes, through the segment of line r(t) = t(−1.64, 1.98) which is
shown in Fig. 1a with the red color segment that meets the line is the red star.

For the second case, the Riemannian metric ℏ is given by (11). It is not difficult to see that
the wind W = (.5, 0) is Killing as the Riemannian metric (11) has no dependency on x and,
therefore, all the partial derivatives in Eq. (5) become zero. In this case, the fire reaches the line
after 2 hours through the yellow curve that reaches the red star. The wave rays are given by
γ

F
(t) = (.5, 0)t+ (x(t), y(t)), where (x(t), y(t)) is the solution of the system (4) with the metric

ℏ =

(
4
25 cos

2( 1−y
2 ) + sin2( 1−y

2 ) 21
48 sin(1− y)

21
48 sin(1− y) 4

25 sin
2( 1−y

2 ) + cos2( 1−y
2 )

)
. (11)

The curve/line segment that reaches the red star is the strategic path through which the fire
reaches the transmission lines. As one can see, in the same area but under different conditions,
the shapes of propagation would be different. When the conditions (fuel distribution, temperature,
humidity, etc.) are uniform across the land, and the wind is constant, the fire rays are line
segments, and the propagation shape is usually a circle or ellipse. However, with even the constant
wind but the nonuniform conditions, the propagation shape is not easily predictable. In this case,
the mathematical techniques would help predict fire behavior more reliably.
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(a) Here a = 9.8, b = 3.98, θ = π/4, and the
wind is toward southeast with speed 4m/s. The
fire reaches the transmission line after 25.21 min
and ∆t = 2.51 min.

(b) Here a = 5/2, b = 1, θ = (1 − y)/2, W = (.5, 0),
and ∆t = 12 min. The fire reaches the transmission
line after 2 hours.

Figure 1: Two propagations in the Shanxi province in the same area, however different conditions. Here,
∆t is the time between two consecutive fire fronts.

4 Conclusion
In this study, we utilized Randers metric techniques to derive equations for the routes through

which wildfires can reach power transmission lines. While we focused on power transmission lines
due to their high applicability, our results can be applied to any area at risk of catching fire.

Identifying strategic paths can lead to more efficient fire control, ultimately reducing the damage
caused by the fire. To demonstrate the potential of our approach, we provided an example of
simulating two hypothetical wildfires that occur in the same area but under different transmission
line conditions.

Future research could explore scenarios involving time-dependent wind patterns, non-flat ter-
rain, and non-smooth conditions throughout the region, which are more reflective of real-world
situations. Although, in the case of time-dependent cases, [2] and [9] already have some interesting
results in Finsler geometry, there are still several important cases corresponding to the reality that
one can investigate.
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