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Handling dense columns in Interior-Point Methods
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Abstract. The Interior-Point methods are a type of method used to solve linear programming
problems that require solving linear systems. In situations where the constraint matrix has dense
columns, it is essential to find an efficient way to solve computationally these systems in order
to avoid memory issues or increase the number of operations. This project proposes a precondi-
tioner to handle this issue, and it provides both theoretical predictions and computational tests to
demonstrate its effectiveness.
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1 Introduction

Interior-point methods (IPM) applied to solve linear programming problems give raise to linear
systems to be solved at each iteration [5] and there are cases in which the constraint matrix
contains at least one dense column, that is, it has many non-zero elements. Not considering dense
and sparse columns separately may deliver linear systems with almost full matrices, which implies
a large number of floating point operations to be performed or even memory difficulties to deal
with large-scale problems.

Some studies have focused on the analysis of linear programming problems whose matrix has
these characteristics. These proposals include the modification of the constraint matrix A, splitting
each dense column into several sparse columns [6], the creation of an equivalent augmented system
[8], the modification of the Schur’s Complement [1] and a modification of the Cholesky factorization
of the sparse matrix [4].

This project proposes the use of a preconditioner applied to an equivalent system for this type
of problem. We prove theoretically that the final system is uniformly bounded when the IPM is
converging and this result is computationally verified when compared to other approaches.

2 Linear programming

The objective of a linear programming problem (LP) is to optimize a linear function subject to
linear constraints. The standard form is given by

min cTx

s.t. Ax = b (1)
x ≥ 0,
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where A ∈ Rm×n has full row-rank, i.e., rank(A) = m ≤ n; c, x ∈ Rn, and b ∈ Rm. This LP
problem is known as primal (PP). Each (PP) has associated a dual problem (DP):

max bT y

s.t. AT y + z = c (2)
y free, z ≥ 0.

The optimality conditions for (PP) and (DP) are given by the Karush-Kuhn-Tucker (KKT)
theorem from [5].

Theorem 2.1 (KKT optimality conditions). x and (y, z) are optimal solutions to the primal and
dual problems, if and only if

Ax = b
x ≥ 0

}
Primal feasible

AT y + z = c
z ≥ 0

}
Dual feasible (3)

XSe = 0
}

Complementary

where X and S are diagonal matrices, whose entries are the elements of vectors x and s respectively;
and e is a vector of ones with the right dimension.

Since computing the exact solution may be costly, we can relax the complementary condition
of the KKT theorem by introducing a scalar parameter µ ∈ (0, 1).

XZe = µe. (4)

The complementarity is a nonlinear condition, therefore, in order to compute the optimal
solution is possible to employ Newton’s method. To obtain the search directions (∆x,∆y,∆z), it
is necessary to solve the following linear system at each k iteration of IPM: A 0 0

0 AT I
Zk 0 Xk

∆xk

∆yk

∆zk

 =

 b−Ax
c−AT y − z
µe−XZe

 :=

 rkb
rkc
rkxz

 . (5)

By eliminating variables, we obtain the normal equations:

AΘkAT∆yk = rkb −AΘk
[
(Xk)−1rkxz − rkc )

]
, (6)

where
Θk = (Zk)−1Xk. (7)

Since A is a full-rank matrix, the normal equation has a symmetric positive definite matrix.
Therefore, direct methods like Cholesky Factorization or iterative approaches like Conjugate Gra-
dient (or Preconditioned Conjugate Gradient) can be used to solve the linear system. From now
we will eliminate the index k related to the iteration of IPM.

So far we discussed the process to solve a linear programming problem with Interior-Point
methods. Now, analyzing the structure of the constraint matrix, a column is considered dense if
it has more than a certain number of non-zero elements. Let P be a column permutation matrix
such that AP = [S,D], where D : m × k contains the k dense columns and S : m × (n − k) the
sparse columns. Also, for scale matrix we have PΘPT = diag(ΘD,ΘS). Supposing P = In, the
normal equations split into two as following

AΘAT = SΘSS
T +DΘDDT . (8)

In order to improve the numerical stability or to get an easier system to be solved it is feasible
to apply preconditioners.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 10, n. 1, 2023.

DOI: 10.5540/03.2023.010.01.0060 010060-2 © 2023 SBMAC

http://dx.doi.org/10.5540/03.2023.010.01.0060


3

3 Preconditioner
The aim of using preconditioners is to improve the numerical stability of the problems to be

solved and to reduce the number of operations to be performed in each iteration of IPM. Thus,
starting from the splitting of A into dense and sparse columns, we create an augmented linear
system with matrix K, which is equivalent to the one delivered for each iteration of IPM. K is an
indefinite matrix with larger dimension and more sparse than the original system delivered of IPM.
Let M be a nonsingular matrix, the preconditioned system is M−1KM−T w̃ = r̃, where w̃ = MTw
and r̃ = M−1r. The adequate definition of M makes the preconditioned matrix more stable and
a final system easier to solve with respect to the original one.

Let F : m×d, d ≤ k be such that LLT = SΘSS
T +FFT , where L is a lower triangular matrix.

We propose a preconditioner applied to the matrix

K =

SΘSS
T + FFT DΘ

1/2
D F

Θ
1/2
D DT −Ik 0
FT 0 Id

 . (9)

The linear system

Kω = K

∆y
q1
q2

 =

r̂0
0

 = r̃ (10)

is equivalent to (6); where q1 : k × 1 and q2 : d× 1. Let

M−1 =

L−1 L−1DΘ
1/2
D −L−1F

0 Θ
−1/2
D 0

0 0 Ik

 , (11)

where Ik is the identity matrix k × k and L is the Cholesky factor of the sparse matrix SΘSS
T +

FFT . Define G := L−1DΘ
1/2
D and J := −L−1F . Then, the preconditioned matrix is

M−1KM−T =

Im +GGT − JJT 0 0
0 −Θ−1

D 0
0 0 Id

 . (12)

Therefore, to recover the search direction ∆y it is necessary to solve a linear system involving
the matrix W = Im + GGT − JJT . Since the matrices G and J depend on Θ, we would like to
analyze the behavior of the matrix W when IPM is converging to the optimal solution.

4 Numerical stability
Definition 4.1. A matrix B : m × n the that depends on γ is uniformly bounded if there is a
constant c independent of γ such that |bij(γ)| ≤ c for all i = 1, . . . ,m and j = 1, . . . , n. We say
B = O(1). This means that the matrix B remains relatively constant as γ changes.

In our particular case, we proceed to analyze that matrix W is uniformly bounded when γ is
converging to zero.

Definition 4.2. A matrix B : m× n that depends on γ is Θ(γ2) if there are positive constants c1
and c2 such that

c1γ
2 ≤ |bij(γ)| ≤ c2γ

2, i = 1 . . .m, j = 1 . . . n. (13)
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Proposition 4.1. W = Im +GGT − JJT is positive definite.

Proof.

W = I +GGT − JJT

= I + L−1DΘDDTL−T − L−1FFTL−T

= L−1(LLT +DΘDDT − FFT )L−T

= L−1(AΘAT )L−T . (14)

Since A is full rank, Θ is a positive diagonal matrix and L is the Cholesky factor of the sparse
part, therefore W is a positive definite matrix.

The next two theorems from Goldfarb, D. and Scheinberg, K. in [4] are important to analyze
the numerical stability of matrix W .

Theorem 4.1. Let A : m × n and Θ be a positive diagonal matrix, whose elements depend on γ
and LΣLT be the Cholesky factorization of AΘAT , where L is a lower triangular matrix with ones
on the main diagonal and Σ is a positive diagonal matrix. Then, the entries of L are uniformly
bounded when γ is approaching zero and the diagonal entries of the matrix Σ are either Θ(γ) or
Θ(γ−1).

Theorem 4.2. If L is a lower triangular matrix with ones on the diagonal, and the subdiagonal
entries that depend on a parameter γ are such that they are uniformly bounded, then the entries of
inverse L−1 are also uniformly bounded.

Based on the previous theorems, we can use the facts that L is the Cholesky factor of the sparse
matrix SΘSS

T , also that DΘDDT is semidefinite positive, the structure and the definition of F ,
and the asymptotic properties to conclude the two following propositions related to the matrices
GGT = L−1DΘDDTL−T and JJT = −L−1FFTL−T :

Proposition 4.2. GGT = O(1) and JJT = O(1).

Proposition 4.3. W is uniformly bounded.

Proof. For each i, j ∈ {1, . . . ,m}, we have

(W )ij =

{
(GGT )ij − (JJT )ij if i ̸= j,

1 + (GGT )ij − (JJT )ij if i = j.
(15)

Since GGT and FFT are uniformly bounded when IPM is close to an optimal solution, by
definition it follows that W = O(1).

5 Computational tests
The numerical experiments were performed with the preconditioner defined in Section 3 and a

modification of the PCx [3] algorithm. The process of the Interior-Point method is developed in C
and the Cholesky factorization associated with the sparse matrix SΘSS

T + FFT was developed
in Fortran, based on the proposal for factoring sparse matrices of [7].

The computational tests were performed in the Linux environment, on an Intel Core i7-3770K,
processor 3.50GHz with 32 GB RAM. For the present project, the LP problems of the article [2]
were tested, for the particular case of Minimum-distance controlled perturbation methods with
L-infinity norm (LP library in http://www-eio.upc.es/~jcastro/).
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Our proposal, which we denote as PCx_mod, was compared with the original PCx process,
(PCx_orig). Also, we compared with the Modified Schur-Complement of Andersen (PCx_Andersen)
in [1]. For these 3 cases, we use the same density criteria. Likewise, we also analyze the case of not
splitting dense and sparse columns (PCx_full). All of these were developed with a modification of
PCx.

Table 1 contains the dimensions of the tested problems. These dimensions are after having
performed preprocessing process. Nnz A refers to the number of nonzeros entries of matrix A, and
ndense is the number of dense columns.

The running time for each case is summarized in Table 2. It does not include the time for
preprocessing. We can observe that some problems produce results that are essentially the same
for PCx_mod, PCx_orig, and PCx_Andersen. Our suggestion had better success in some cases.
The PCx_full approach obtained extremely high times, as anticipated. Those that obtained "UN-
KNOWN" result is because the convergence rate is very slow or the gamma value increases from
one iteration to another, and "-" refers that a problem took more than 5 hours to be solved.

And finally, Table 3 exposes the number of iterations required to find an optimal solution of
IPM. Similar results are observed for some examples. This result is complementary to the running
time analysis.

To solve the linear system associated with the matrix W , we applied the Conjugated Gradient
(CG) iterative method and for each iteration of IPM it was required one iteration of CG.

Table 1: Tested problems.
LP problem m n Nnz A ndense
Linf_bts4 55145 96465 31150 1
Linf_five20c 47128 74279 23619 1
Linf_five20b 48143 76873 24506 1
Linf_jjtabeltest3 2563 4240 1686 2
Linf_nine5d 9782 15897 5024 1
Linf_nine12 15770 26795 8298 1
Linf_ninenew 9139 15342 4709 1
Linf_table3 3477 6453 1875 1

Table 2: Running time of each approaching method
Time (s)

LP problem PCx_mod PCx_orig PCx_Andersen PCx_full
Linf_bts4 23.01 25.86 24.26 110446.02
Linf_five20c 1064.38 1064.44 1065.45 51763.45
Linf_five20b 189.13 196.47 189.95 -
Linf_jjtabeltest3 0.06 0.05 INFEASIBLE 7.33
Linf_nine5d 1.76 1.77 1.77 334.5
Linf_nine12 17.44 17.69 17.91 1769.12
Linf_ninenew 13.58 13.91 14.24 406.35
Linf_table3 1.11 INFEASIBLE UNKNOWN 34.91
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Table 3: Iterations for each approaching method
Number of iterations

LP problem PCx_mod PCx_orig PCx_Andersen PCx_full
Linf_bts4 39 40 34 36
Linf_five20c 20 20 20 20
Linf_five20b 20 20 21 -
Linf_jjtabeltest3 28 28 INFEASIBLE 24
Linf_nine5d 16 16 16 15
Linf_nine12 14 14 14 15
Linf_ninenew 13 14 14 14
Linf_table3 27 INFEASIBLE UNKNOWN 24

The omission of the dense columns leads to a noticeably longer running time compared to any
method that includes them, as confirmed by the computational results. Our proposed precondi-
tioner provides an advantage in terms of the rapid convergence of the Conjugate Gradient method
when solving the linear system. This enables it to compete favorably with other approaches in
terms of running time. Moreover, our method demonstrated the capability to solve a greater num-
ber of LP problems that were either infeasible or unknown to other approaches. This is evident
from the results obtained for the Linf_table3 problem, where our method successfully achieved
the optimal solution.

6 Conclusions
This project presents a new approach for handling LP problems that involve dense columns, by

utilizing a preconditioner on a modified system. Theoretical evidence supports the assertion that
the resulting linear system remains uniformly bounded. Moreover, computational tests indicate
that this method has the potential to enhance running time or reduce the number of iterations
required.

To evaluate the effectiveness of the proposed preconditioner, it was competitive computation-
ally against other existing approaches. The results of computational tests revealed comparable
outcomes in terms of the number of iterations and running time. However, our proposal surpassed
these approaches by successfully solving a greater number of LP problems, establishing its reliabil-
ity. These findings emphasize the competitiveness of the proposed method as an effective approach
for LP problems with dense columns.
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