Trabalho apresentado no XLII CNMAC, Universidade Federal de Mato Grosso do Sul - Bonito - MS, 2023

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Estudo Numérico do Método Híbrido Primal em Problemas Quase-incompressíveis

Giovanni Taraschi¹ Programa de Doutorado em Matemática Aplicada - IMECC/Unicamp, Campinas, SP Maicon Ribeiro Correa² Departamento de Matemática Aplicada - IMECC/Unicamp, Campinas, SP

Resumo. Neste trabalho exploramos a aplicação do Método Híbrido Primal (MHP) em malhas de quadrados para a aproximação de problemas quase-incompressíveis de elasticidade linear. Em nossos experimentos numéricos, o MHP com o espaço de aproximação de mais baixa ordem mostrou-se robusto, apresentando o mesmo nível de acurácia em problemas compressíveis e quase-incompressíveis. O mesmo não pode ser dito para espaços de mais alta ordem, para os quais os erros na aproximação aumentam conforme nos aproximamos do limite de incompressibilidade.

Palavras-chave. Método de Elementos Finitos, Elasticidade Linear, Método Híbrido Primal, Problemas quase-incompressíveis

1 Elasticidade linear e o limite de incompressibilidade

Considere $\Omega \subset \mathbb{R}^2$ um domínio limitado e ocupado por um corpo elástico. O problema da elasticidade linear consiste em encontrar o campo deslocamento $\boldsymbol{u}: \Omega \to \mathbb{R}^2$ tal que

$$\operatorname{div}\left(\boldsymbol{C}\boldsymbol{\varepsilon}(\boldsymbol{u})\right) = \boldsymbol{f} \quad \text{em} \quad \Omega \tag{1a}$$

$$\boldsymbol{u} = \boldsymbol{g} \quad \text{sobre} \quad \partial \Omega, \tag{1b}$$

onde $\varepsilon(u)$ denota a parte simétrica do gradiente de u. As funções vetoriais $f \in L^2(\Omega, \mathbb{R}^2)$ e $g \in H^{\frac{1}{2}}(\partial\Omega, \mathbb{R}^2)$ são dados do problema que descrevem a carga aplicada sobre o corpo elástico e as condições de contorno de Dirichlet, respectivamente. As propriedades físicas do material elástico são descritas pelo tensor de quarta ordem, uniformemente positivo definido e simétrico C, chamado de tensor de Elasticidade.

Para o caso particular de problemas isotrópicos, o tensor de Elasticidade C pode ser escrito em função dos coeficientes de Lamé $\mu > 0$ e $\lambda \ge 0$ de acordo com

$$CS = 2\mu S + \lambda \operatorname{tr}(S)I, \quad \forall S \in \mathbb{S},$$
(2)

onde S denota o espaço dos tensores 2×2 simétricos. Os coeficientes de Lamé estão relacionados ao módulo de elasticidade E > 0 e à constante de Poisson $0 \le \nu < 0.5$ pelas seguintes expressões

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} \quad e \quad \mu = \frac{E}{2(1+\nu)}.$$
(3)

Dizemos que um problema isotrópico em elasticidade linear é quase-incompressível quando ν tende à 0.5, o que resulta em λ tender à infinito, tornando o tensor C não limitado.

¹gitaraschi@gmail.com

²maicon@ime.unicamp.br

 $\mathbf{2}$

Alguns métodos clássicos de Elementos Finitos, como o amplamente utilizado método de Galerkin $H^1(\Omega)$ -conforme, falham no limite de incompressibilidade, em um fenômeno chamado "locking" [2, 6]. Faz-se então necessário o desenvolvimento de métodos mais sofisticados, capazes de fornecer boas aproximações mesmo neste cenário mais desafiador. Exemplos de tais métodos podem ser encontrados, por exemplo, em [4, 6, 8].

O objetivo deste trabalho é estudar o comportamento do método de elementos finitos Híbrido Primal [1, 5, 9, 10] no limite de incompressibilidade. Para este estudo inicial, nos restringimos ao caso em que Ω é particionado em malhas compostas por quadrados, e avaliaremos o desempenho do método em dois problemas teste usando três espaços de aproximação diferentes.

2 Método Híbrido Primal para a elasticidade linear

Considere \mathcal{T}_{h} uma partição de Ω em sub-domínios disjuntos chamados de elementos. Para cada elemento $K \in \mathcal{T}_{h}$, considere $H^{1}(K, \mathbb{R}^{2})$ o espaço de funções vetoriais tais que cada componente pertence ao espaço de Sobolev $H^{1}(K)$, $H^{\frac{1}{2}}(\partial\Omega, \mathbb{R}^{2})$ o espaço composto pelo traço das funções em $H^{1}(K, \mathbb{R}^{2})$ e $H^{-\frac{1}{2}}(\partial\Omega, \mathbb{R}^{2})$ o espaço dual de $H^{\frac{1}{2}}(\partial\Omega, \mathbb{R}^{2})$. Sobre a partição \mathcal{T}_{h} , também chamada de malha, definimos os seguintes espaços vetoriais

$$\boldsymbol{X}(\mathcal{T}_{\mathrm{h}},\mathbb{R}^{2}) = \left\{ \boldsymbol{v} \in L^{2}(\Omega,\mathbb{R}^{2}) : \boldsymbol{v}|_{K} \in H^{1}(K,\mathbb{R}^{2}), \forall K \in \mathcal{T}_{\mathrm{h}} \right\},\tag{4}$$

$$\boldsymbol{M}(\mathcal{T}_{\mathrm{h}},\mathbb{R}^{2}) = \left\{ \boldsymbol{\mu} \in \prod_{K \in \mathcal{T}_{\mathrm{h}}} H^{-\frac{1}{2}}(\partial K,\mathbb{R}^{2}) : \exists \boldsymbol{S} \in H(\mathrm{div},\Omega,\mathbb{M}) \text{ tal que} \\ \boldsymbol{Sn}^{\partial K} = \boldsymbol{\mu} \text{ sobre } \partial K, \forall K \in \mathcal{T}_{\mathrm{h}} \right\}, \quad (5)$$

onde $\mathbf{n}^{\partial K}$ é a normal unitária exterior à ∂K e $H(\operatorname{div}, \Omega, \mathbb{M})$ denota o espaço das funções tensoriais 2×2 tais que cada componente, assim como o divergente tomado linha a linha, são quadrado integráveis.

A formulação variacional híbrida primal para o problema (1) consiste em encontrar o campo deslocamento $u \in X$ e o multiplicador de Lagrange $m \in M$ tais que

$$\sum_{K\in\mathcal{T}_{\rm h}}\int_{K} \boldsymbol{C}\boldsymbol{\varepsilon}(\boldsymbol{u}):\boldsymbol{\varepsilon}(\boldsymbol{v})\,\mathrm{dx}-\sum_{K\in\mathcal{T}_{\rm h}}\int_{\partial K}\boldsymbol{m}\cdot\boldsymbol{v}\,\mathrm{ds}=-\int_{\Omega}\boldsymbol{f}\cdot\boldsymbol{v}\,\mathrm{dx}\qquad\forall\,\boldsymbol{v}\in\boldsymbol{X},\tag{6a}$$

$$\sum_{K \in \mathcal{T}_{h}} \int_{\partial K} \boldsymbol{\mu} \cdot \boldsymbol{u} \, \mathrm{ds} = \sum_{e \in \mathcal{B}} \int_{e} \boldsymbol{\mu} \cdot \boldsymbol{g} \, \mathrm{ds} \quad \forall \, \boldsymbol{\mu} \in \boldsymbol{M}, \tag{6b}$$

onde \mathcal{B} denota o conjunto das arestas de \mathcal{T}_{h} que estão na fronteira $\partial\Omega$ e as integrais sobre ∂K devem ser entendidas como o produto de dualidade entre $H^{\frac{1}{2}}(\partial K, \mathbb{R}^{2})$ e $H^{-\frac{1}{2}}(\partial K, \mathbb{R}^{2})$.

Para obter o Método Híbrido Primal (MHP), devemos substituir os espaços $X \in M$ em (6) por sub-espaços de dimensão finita $X_h \subset X \in M_h \subset M$. A escolha de tais espaços deve satisfazer determinadas condições de compatibilidade, de forma a garantir a existência e unicidade do problema discreto associado [5, 7, 9]. Baseados na análise desenvolvida em [9, 10], apresentamos agora algumas escolhas compatíveis em malhas compostas por quadriláteros convexos.

Dada \mathcal{T}_{h} uma malha quadrilateral, segue que para cada $K \in \mathcal{T}_{h}$ existe um isomorfismo bilinear F_{K} tal que

$$K = F_K(\hat{K}),\tag{7}$$

onde $\hat{K} = [-1,1] \times [-1,1]$ é chamado de elemento de referência. Sobre o elemento de referência \hat{K} , definimos o espaço $Q_r(\hat{K})$, composto pelos polinômios em \hat{K} com grau igual ou menor a r em

3

cada uma das coordenadas. Denotamos por $Q_r^+(\hat{K})$ o espaço gerado pelas combinações lineares dos polinômios de $Q_r(\hat{K})$ mais uma função v_0 dada por

$$v_0(\hat{x}_1, \hat{x}_2) = [\hat{x}_1(1 - \hat{x}_1) - \hat{x}_2(1 - \hat{x}_2)][(\hat{x}_1(1 - \hat{x}_1))^{\frac{r-1}{2}} + (\hat{x}_2(1 - \hat{x}_2))^{\frac{r-1}{2}}]$$

para rimpar, e

$$v_0(\hat{x}_1, \hat{x}_2) = [\hat{x}_1(1 - \hat{x}_1) - \hat{x}_2(1 - \hat{x}_2)](2\hat{x}_1 - 1)(2\hat{x}_2 - 1)[(\hat{x}_1(1 - \hat{x}_1))^{\frac{r-2}{2}} + (\hat{x}_2(1 - \hat{x}_2))^{\frac{r-2}{2}}]$$

para r par. Definimos também o espaço $E_m(\partial \hat{K})$, composto pelas funções sobre $\partial \hat{K}$ que, quando restritas a cada aresta de \hat{K} , são polinômios de grau igual ou menor a m.

A partir dos espaços $Q_r^+(K)$ e $E_m(\partial K)$, e usando os isomorfismos F_K , podemos definir os seguintes espaços sobre os elementos geométricos $K \in \mathcal{T}_h$

$$\mathcal{Q}_{r}^{+}(K,\mathbb{R}^{2}) = \left\{ \boldsymbol{v} \in H^{1}(K,\mathbb{R}^{2}) : \boldsymbol{v} = \hat{\boldsymbol{v}} \circ F_{K}^{-1}, \ \hat{\boldsymbol{v}} \in Q_{r}^{+}(\hat{K}) \times Q_{r}^{+}(\hat{K}) \right\},\tag{8}$$

$$\mathcal{E}_m(\partial K, \mathbb{R}^2) = \left\{ \boldsymbol{\mu} \in L^2(\partial K, \mathbb{R}^2) : \boldsymbol{\mu} = \hat{\boldsymbol{\mu}} \circ F_K^{-1}, \, \hat{\boldsymbol{\mu}} \in E_m(\partial \hat{K}) \times E_m(\partial \hat{K}) \right\}.$$
(9)

Finalmente, os espaços de aproximação globais \boldsymbol{X}_h e \boldsymbol{M}_h são construídos de acordo com

$$\boldsymbol{X}_{h} = \mathcal{Q}_{m+1}^{+}(\mathcal{T}_{h}, \mathbb{R}^{2}) = \left\{ \boldsymbol{v} \in L^{2}(\Omega, \mathbb{R}^{2}) : \boldsymbol{v}|_{K} \in \mathcal{Q}_{m+1}^{+}(K, \mathbb{R}^{2}), \forall K \in \mathcal{T}_{h} \right\},$$
(10)

$$\boldsymbol{M}_{h} = \mathcal{E}_{m}(\mathcal{T}_{h}, \mathbb{R}^{2}) = \left\{ \boldsymbol{\mu} \in \prod_{K \in \mathcal{T}_{h}} \mathcal{E}_{m}(\partial K, \mathbb{R}^{2}) : \boldsymbol{\mu}|_{\partial K_{1}} + \boldsymbol{\mu}|_{\partial K_{2}} = 0 \text{ sobre } K_{1} \cap K_{2}, \text{ para todo parallel} \right\}$$

de elementos adjacentes $K_1, K_2 \in \mathcal{T}_h$. (11)

Segue que os espaços $X_h \times M_h = \mathcal{Q}_{m+1}^+(\mathcal{T}_h, \mathbb{R}^2) \times \mathcal{E}_m(\mathcal{T}_h, \mathbb{R}^2)$ são compatíveis para todo inteiro $m \ge 0$. Fazendo uso destes espaços, garantimos a existência e unicidade de solução para o MHP.

3 Experimentos Numéricos

Nesta seção, utilizamos o MHP com os espaços de aproximação $\mathcal{Q}_{m+1}^+(\mathcal{T}_h, \mathbb{R}^2) \times \mathcal{E}_m(\mathcal{T}_h, \mathbb{R}^2)$ para resolver problemas quase-incompressíveis de elasticidade linear. São propostos dois problemas teste. O primeiro problema, proposto anteriormente em [3], é obtido tomando $\Omega = (-1, 1) \times (-1, 1)$, fixando $\mu = 1$ e escolhendo

$$\boldsymbol{f}(x,y) = \pi^2 \begin{bmatrix} 4\sin(2\pi y)(1-2\cos(2\pi x)) + \cos(\pi(x+y)) - \frac{2}{1+\lambda}\sin(\pi x)\sin(\pi y) \\ 4\sin(2\pi x)(2\cos(2\pi y) - 1) + \cos(\pi(x+y)) - \frac{2}{1+\lambda}\sin(\pi x)\sin(\pi y) \end{bmatrix}.$$
 (12)

Para g = 0, que corresponde a condições homogêneas de Dirichlet, a solução exata é dada por

$$\boldsymbol{u}(x,y) = \begin{bmatrix} \sin(2\pi y)(\cos(2\pi x) - 1) + \frac{1}{1+\lambda}\sin(\pi x)\sin(\pi y)\\ \sin(2\pi x)(1 - \cos(2\pi y)) + \frac{1}{1+\lambda}\sin(\pi x)\sin(\pi y) \end{bmatrix}.$$
(13)

No segundo problema teste, fixamos novamente $\mu = 1$ mas agora tomamos $\Omega = (0, 1) \times (0, 1)$. Como solução exata para o problema, adotamos o campo

$$\boldsymbol{u}(x,y) = \begin{bmatrix} xy \, e^{(x+y)} \\ (1+x)(1-y) \, e^{(x+y)} \end{bmatrix}$$
(14)

e definimos \boldsymbol{g} como o traço de \boldsymbol{u} em $\partial\Omega$. Substituindo (14) em (1a), segue que a expressão de \boldsymbol{f} para que (14) seja de fato solução do problema (1) deve ser

$$\boldsymbol{f}(x,y) = \begin{bmatrix} (x+y+xy) e^{(x+y)} \\ (1-2y-xy) e^{(x+y)} \end{bmatrix}.$$
(15)

Para ambos os problemas testes, o tensor de elasticidade foi calculado de acordo com (2), e os valores para λ foram obtidos a partir da constante de Poisson. No caso particular em que $\mu = 1$ é mantido fixo, segue de (3) a seguinte expressão para λ

$$\lambda = \frac{2\nu}{1 - 2\nu}.\tag{16}$$

Foram avaliados três casos, correspondentes a três valores distintos para a constante de Poisson: $\nu = 0.3$, $\nu = 0.5 - 10^{-4}$ e $\nu = 0.5 - 10^{-7}$. Note que a primeira escolha para ν resulta em problemas compressíveis, enquanto as duas últimas se aproximam progressivamente do limite de incompressibilidade.

Para os três casos abordados e em ambos os problemas teste, foram obtidas soluções aproximadas $(\boldsymbol{u}_h, \boldsymbol{m}_h)$ usando partições de Ω compostas por $n \times n$ quadrados, com n variando de 16 à 128. Foram utilizados os espaços de aproximação $\mathcal{Q}_{m+1}^+(\mathcal{T}_h, \mathbb{R}^2) \times \mathcal{E}_m(\mathcal{T}_h, \mathbb{R}^2)$ com $m = 0, 1 \in 2$. Os erros $\boldsymbol{u} - \boldsymbol{u}_h$ para a aproximação do deslocamento foram medidos na norma L^2 , enquanto os erros $\boldsymbol{m} - \boldsymbol{m}_h$ foram medidos utilizando a seguinte norma em \boldsymbol{M}

$$\|\mu\|_{\boldsymbol{M}} = \left(\sum_{K \in \mathcal{T}_{h}} h_{K} \|\mu\|_{0,\partial K}^{2}\right)^{\frac{1}{2}},$$
(17)

onde h_K denota o diâmetro do elemento K. Os resultados encontrados para os erros, assim como suas respectivas taxas de convergência, são apresentados nas Tabelas 1 a 3.

Primeiro problema teste					Segundo problema teste					
	$\ oldsymbol{u}-oldsymbol{u}_h\ _0$		$\ m{m}-m{m}_h\ _{m{M}}$		$\ oldsymbol{u}-oldsymbol{u}_h\ _0$		$\ m{m} - m{m}_h\ _{m{M}}$			
n	err.	taxa	err.	taxa	err.	taxa	err.	taxa		
	Caso $\nu = 0.3 \ (\lambda = 1.5)$									
16	1.110e-01	2.09	$8.625\mathrm{e}{+00}$	1.16	4.215e-03	2.00	7.714e-01	1.01		
32	2.766e-02	2.01	$4.231\mathrm{e}{+00}$	1.03	1.054e-03	2.00	3.850e-01	1.00		
64	6.912e-03	2.00	$2.106\mathrm{e}{+00}$	1.01	2.635e-04	2.00	1.924 e- 01	1.00		
128	1.728e-03	2.00	$1.052\mathrm{e}{+00}$	1.00	6.587 e-05	2.00	9.618e-02	1.00		
Caso $\nu = 0.5 - 10^{-4} \ (\lambda \approx 5 \cdot 10^3)$										
16	1.086e-01	2.01	$8.683e{+}00$	1.19	3.548e-03	2.00	7.743e-01	1.02		
32	2.721e-02	2.00	$4.228\mathrm{e}{+00}$	1.04	8.866e-04	2.00	3.854 e-01	1.01		
64	6.806e-03	2.00	$2.101\mathrm{e}{+00}$	1.01	2.216e-04	2.00	1.925e-01	1.00		
128	1.702e-03	2.00	$1.049\mathrm{e}{+00}$	1.00	5.540e-05	2.00	9.619e-02	1.00		
Caso $\nu = 0.5 - 10^{-7} \ (\lambda \approx 5 \cdot 10^6)$										
16	1.086e-01	2.01	$8.683e{+}00$	1.19	3.548e-03	2.00	7.743e-01	1.02		
32	2.721e-02	2.00	$4.228\mathrm{e}{+00}$	1.04	8.866e-04	2.00	3.854 e-01	1.01		
64	6.806e-03	2.00	$2.101\mathrm{e}{+00}$	1.01	2.216e-04	2.00	1.925 e- 01	1.00		
128	1.702e-03	2.00	$1.049\mathrm{e}{+00}$	1.00	5.540e-05	2.00	9.619e-02	1.00		

Tabela 1: Resultados para ambos os problemas teste usando o espaço $\mathcal{Q}_1^+(\mathcal{T}_h,\mathbb{R}^2)\times\mathcal{E}_0(\mathcal{T}_h,\mathbb{R}^2).$

r fillieno problema teste					Segundo problema teste				
	$\ oldsymbol{u}-oldsymbol{u}_h\ _0$		$\ m{m}-m{m}_h\ _{m{M}}$		$\ oldsymbol{u}-oldsymbol{u}_h\ _0$		$\ oldsymbol{m}-oldsymbol{m}_h\ _{oldsymbol{M}}$		
n	err.	taxa	err.	taxa	err.	taxa	err.	taxa	
Caso $\nu = 0.3$ ($\lambda = 1.5$)									
16	9.314e-03	2.75	$1.769\mathrm{e}{+00}$	1.68	4.577e-05	2.89	1.886e-02	2.14	
32	1.285e-03	2.86	4.205e-01	2.07	5.975e-06	2.94	4.429e-03	2.09	
64	1.667e-04	2.95	9.742e-02	2.11	7.645e-07	2.97	1.066e-03	2.05	
128	2.105e-05	2.98	2.362e-02	2.04	9.672e-08	2.98	2.611e-04	2.03	
Caso $\nu = 0.5 - 10^{-4} \ (\lambda \approx 5 \cdot 10^3)$									
16	2.094e-02	3.53	$5.715\mathrm{e}{+01}$	1.29	9.090e-05	3.31	$1.219\mathrm{e}{+00}$	2.60	
32	1.703e-03	3.62	$1.083\mathrm{e}{+01}$	2.40	8.294e-06	3.45	2.095e-01	2.54	
64	1.777e-04	3.26	$1.582\mathrm{e}{+00}$	2.78	8.777e-07	3.24	3.656e-02	2.52	
128	2.133e-05	3.06	2.267 e-01	2.80	1.038e-07	3.08	6.419e-03	2.51	
Caso $\nu = 0.5 - 10^{-7} \ (\lambda \approx 5 \cdot 10^6)$									
16	9.507e-02	2.07	$4.922e{+}02$	-0.98	5.195e-04	1.99	$8.419\mathrm{e}{+02}$	2.70	
32	2.018e-02	2.24	$8.392\mathrm{e}{+02}$	-0.77	8.205e-05	2.66	$1.449\mathrm{e}{+02}$	2.54	
64	1.812e-03	3.48	$5.382\mathrm{e}{+02}$	0.64	1.188e-05	2.79	$2.514\mathrm{e}{+01}$	2.53	
128	8.029e-05	4.50	$1.199\mathrm{e}{+02}$	2.17	1.434e-06	3.05	$4.421\mathrm{e}{+00}$	2.51	

Tabela 2: Resultados para ambos os problemas teste usando o espaço $\mathcal{Q}_2^+(\mathcal{T}_h, \mathbb{R}^2) \times \mathcal{E}_1(\mathcal{T}_h, \mathbb{R}^2)$. Primeiro problema teste Segundo problema teste

Tabela 3: Resultados para ambos os problemas teste usando o espaço $\mathcal{Q}_3^+(\mathcal{T}_h, \mathbb{R}^2) \times \mathcal{E}_2(\mathcal{T}_h, \mathbb{R}^2)$.

Primeiro problema teste					Segundo problema teste				
	$\ oldsymbol{u}-oldsymbol{u}_h\ _0$		$\ m{m}-m{m}_h\ _{m{M}}$		$\ oldsymbol{u}-oldsymbol{u}_h\ _0$		$\ m{m}-m{m}_h\ _M$		
n	err.	taxa	err.	taxa	err.	taxa	err.	taxa	
Caso $\nu = 0.3$ ($\lambda = 1.5$)									
16	3.631e-04	3.96	6.486e-02	3.04	1.226e-07	3.99	7.517e-05	3.03	
32	2.289e-05	3.99	8.058e-03	3.01	7.699e-09	3.99	9.326e-06	3.01	
64	1.434e-06	4.00	1.006e-03	3.00	4.822e-10	4.00	1.163e-06	3.00	
128	8.969e-08	4.00	1.256e-04	3.00	3.017e-11	4.00	1.452 e- 07	3.00	
Caso $\nu = 0.5 - 10^{-4} \ (\lambda \approx 5 \cdot 10^3)$									
16	4.376e-04	3.94	1.195e-01	3.07	1.296e-07	4.03	1.031e-03	3.75	
32	2.765e-05	3.98	1.939e-02	2.62	8.208e-09	3.98	1.013e-04	3.35	
64	1.732e-06	4.00	3.289e-03	2.56	5.259e-10	3.96	1.057 e-05	3.26	
128	1.082e-07	4.00	4.337e-04	2.92	3.353e-11	3.97	1.078e-06	3.29	
Caso $\nu = 0.5 - 10^{-7} \ (\lambda \approx 5 \cdot 10^6)$									
16	4.378e-04	3.94	1.207 e-01	3.06	1.292e-07	4.04	8.388e-01	4.00	
32	2.767e-05	3.98	2.066e-02	2.55	8.048e-09	4.00	5.243 e- 02	4.00	
64	1.735e-06	4.00	4.379e-03	2.24	5.388e-10	3.90	3.277e-03	4.00	
128	1.085e-07	4.00	1.035e-03	2.08	1.576e-10	1.77	2.051e-04	4.00	

Para o espaço de mais baixa ordem (m = 0), vemos pela Tabela 1 que o MHP se mostrou robusto nos cenários quase-incompressíveis para ambos os problemas teste. Tanto na aproximação de \boldsymbol{u} quanto na aproximação de \boldsymbol{m} , vemos que os erros não aumentam conforme ν se aproxima de 0.5, mostrando que a mesma precisão observada no caso compressível ($\nu = 0.3$) se mantém nos casos quase-incompressíveis ($\nu = 0.5 - 10^{-4}$ e $\nu = 0.5 - 10^{-7}$). Para o caso de malhas triangulares, foi provado em [1] que o MHP de mais baixa ordem é robusto para problemas próximos ao limite

6

de incompressibilidade. Os resultados apresentados aqui sugerem que essa boa performance pode também se estender para partições em quadrados.

Para m = 1, que corresponde ao espaço de segunda ordem $Q_2^+(\mathcal{T}_h, \mathbb{R}^2) \times \mathcal{E}_1(\mathcal{T}_h, \mathbb{R}^2)$, o MHP se mostrou mais instável. Para a aproximação de u os erros aumentam conforme ν tende à 0.5. Esse aumento é sutil no primeiro problema teste e um pouco mais severo no segundo. Ainda assim, o método foi capaz de obter aproximações relativamente precisas para o deslocamento nos casos estudados. O problema maior aparece quando analisamos a aproximação de m. Pela Tabela 2, vemos que em ambos os problemas testes os erros $m - m_h$ aumentam significativamente quando ν se aproxima de 0.5. Comparando os casos $\nu = 0.3$ e $\nu = 0.5 - 10^{-7}$, vemos que os erros $m - m_h$ são quatro ordens de magnitude maiores no segundo caso.

Por fim temos os resultados para m = 3. Para a aproximação de u as conclusões são semelhantes ao do caso m = 2. Os erros aumentam conforme nos aproximamos do limite de incompressibilidade, mas esse aumento é sutil em ambos os problemas. Para a aproximação de m o aumento no tamanho dos erros continua sutil para o primeiro problema teste, e só se torna mais problemático no segundo. Apesar de m = 3 não exibir a mesma robusteza observada para m = 0, a situação é menos crítica do que para m = 2, ao menos para os problemas teste analisados aqui.

4 Conclusões e considerações finais

Para o espaço de aproximação de mais baixa ordem (m = 0), os resultados numéricos deste trabalho sugerem que o MHP em malhas de quadrados é robusto no limite de incompressibilidade. Resultados semelhantes a estes foram demonstrados para partições em triângulos em [1]. No entanto, a análise do MHP em quadriláteros é mais delicada do que em triângulos e exige alguns cuidados extras, como destacado em [10]. Por hora, não temos como garantir que os resultados da Tabela 1 possam ser extrapolados para problemas teste diferentes dos abordados aqui ou para partições quadrilaterais mais gerais.

Por outro lado, espaços de maior ordem (m = 1 e m = 2) não exibiram a mesma robustez e consistência vistas no caso de baixa ordem. Em geral, os erros de aproximação aumentam conforme ν se aproxima de 0.5. Em alguns casos esse aumento é pouco acentuado e não oferece grande prejuízo para a acurácia da solução. Este é o caso, por exemplo, da aproximação de u com o espaço $Q_3^+(\mathcal{T}_h, \mathbb{R}^2) \times \mathcal{E}_2(\mathcal{T}_h, \mathbb{R}^2)$. Em outros cenários o aumento no erro é extremamente severo, provocando resultados proibitivamente imprecisos em problemas quase-incompressíveis, como ocorre na aproximação de m com o espaço $Q_2^+(\mathcal{T}_h, \mathbb{R}^2) \times \mathcal{E}_1(\mathcal{T}_h, \mathbb{R}^2)$. Desenvolvimentos futuros, tanto do ponto de vista numérico como teórico, são necessários para entender completamente o comportamento do MHP com espaços de alta ordem no limite de incompressibilidade.

Agradecimentos

Esse trabalho foi realizado com apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) através dos processos 140400/2021-4 e 304192/2019-8 e da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), sob o processo 2013/07375-0.

Referências

 Sanjib Kumar Acharya e Kamana Porwal. "Primal hybrid finite element method for the linear elasticity problem". Em: Applied Mathematics and Computation 435 (2022), p. 127462. ISSN: 0096-3003. DOI: 10.1016/j.amc.2022.127462.

- [2] Mark Ainsworth e Charles Parker. "Unlocking the secrets of locking: Finite element analysis in planar linear elasticity". Em: Computer Methods in Applied Mechanics and Engineering 395 (2022), p. 115034. ISSN: 0045-7825. DOI: 10.1016/j.cma.2022.115034.
- [3] Susanne C. Brenner. "A Nonconforming Mixed Multigrid Method for the Pure Displacement Problem in Planar Linear Elasticity". Em: SIAM Journal on Numerical Analysis 30.1 (1993), pp. 116–135. DOI: 10.1137/0730006.
- [4] Yuyan Chen e Shuo Zhang. "A conservative stable finite element method for Stokes flow and nearly incompressible linear elasticity on rectangular grid". Em: Journal of Computational and Applied Mathematics 323 (2017), pp. 53-70. ISSN: 0377-0427. DOI: 10.1016/j. cam.2017.04.011. URL: https://www.sciencedirect.com/science/article/pii/ S0377042717301668.
- [5] Maicon R. Correa e Giovanni Taraschi. "Optimal H(div) flux approximations from the Primal Hybrid Finite Element Method on quadrilateral meshes". Em: Computer Methods in Applied Mechanics and Engineering 400 (2022), p. 115539. ISSN: 0045-7825. DOI: 10. 1016/j.cma.2022.115539.
- [6] Peter Hansbo e Mats G. Larson. "Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method". Em: Computer Methods in Applied Mechanics and Engineering 191.17 (2002), pp. 1895–1908. ISSN: 0045-7825. DOI: 10.1016/S0045-7825(01)00358-9.
- [7] Christopher Harder, Alexandre L. Madureira e Frédéric Valentin. "A hybrid-mixed method for elasticity". Em: ESAIM: M2AN 50.2 (2016), pp. 311–336. DOI: 10.1051/m2an/2015046.
- [8] Thiago O. Quinelato et al. "Full H(div)-approximation of linear elasticity on quadrilateral meshes based on ABF finite elements". Em: Computer Methods in Applied Mechanics and Engineering 347 (2019), pp. 120–142. ISSN: 0045-7825. DOI: 10.1016/j.cma.2018. 12.013.
- [9] Pierre-Arnaud Raviart e Jean-Marie Thomas. "Primal hybrid finite element methods for 2nd order elliptic equations". Em: Mathematics of computation 31.138 (1977), pp. 391–413. DOI: 10.2307/2006423.
- [10] Giovanni Taraschi e Maicon R. Correa. "On the convergence of the primal hybrid finite element method on quadrilateral meshes". Em: Applied Numerical Mathematics 181 (2022), pp. 552–560. ISSN: 0168-9274. DOI: 10.1016/j.apnum.2022.07.005.

7