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drill-string dynamics
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Abstract. A comparison of the dynamics obtained using two different models of a drill-string is
made. A structure that is 1200 m long is analysed. In the first model, a two degrees-of-freedom
(DOF) approach is used, where 1-axial DOF and 1-torsional DOF are considered. This model has
been widely used in the literature. The second model maintains the 1-DOF axial formulation and
employs a wave-equation for the torsional part. In both cases, the structural dynamics are coupled
with the dynamics of the cutting through the depth-of-cut used in the bit-rock interaction relation.
To calculate the previous depth, an advection equation is solved along with the equations of motion.
One application case is simulated. The results show that the dynamics differ considerably. This
suggests that the second model, with a continuous torsional shaft, could be capturing aspects of
the dynamics that are neglected in the 2-DOF approach.

Palavras-chave. Drill-string dynamics, soil cutting, advection equation in cutting, torsional oscil-
lations, stick-slip

1 Introduction
Drill-strings are very slender structures used in the extraction of oil and gas that may undergo

complex dynamics, exhibiting vibrations and stick-slip, as in [3], as well as buckling and other
phenomena.

In relation with their modelling, both discrete and continuous models are found in the literature.
For instance, [4] presents a 2 degrees-of-freedom (DOF) model to study the cause of drill-string
stick-slip vibrations. The model introduces a novelty in comparison to previous research: instead
of adopting a classical velocity-dependent bit-rock formulation, it proposes a velocity-independent
approach. This way, the research of [4] showed that rate-independent bit-rock formulations can
better explain the origin of the stick-slip vibrations in drill-strings. The results show that self-
excited stick-slip vibrations can also arise as a consequence of the regenerative cutting (that is, the
successive cutting over a wavy surface), reproducing the results observed by previous researchers,
although this time they are not justified through velocity-dependent rock parameters which, given
that other research claims to not have found such behaviour in other experimental tests, could be
unrealistic.

Examples of continuous models are found in [1, 5], to name some.
Given the different formulations found across studies concerning drill-string dynamics, there is

no clear consensus towards the choice of an optimal model for drill-strings. This choice might be
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motivated by the integration run-time, simplicity, or the capacity to tackle the problem analytically,
a task that is often more difficult when continuous formulations are employed. The aim of this
work is to show that a 2-DOF model to simulate the dynamics of a real scale drill-string may result
in an oversimplification of the problem. This will be shown through a comparison between two
different models. The analysis presented in this article is an excerpt of the work carried out in [2].

2 The drill-string models

In this study, the predictions obtained by two different models, namely M1 and M2, will be
compared. A sketch showing the details of each model is provided in Fig. 1.

Model M1 is based on the formulation developed by [4], although some changes in the im-
plementation were made, with the observation that the simulations do not present appreciable
differences with regards to the original simulations.

Model M2 is similar to M1, although the torsional dynamics are tackled with a continuous
formulation while retaining a 1-DOF approach for the axial motion.
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Figure 1: A sketch showing the two models employed, M1 and M2. Model M1: M is a mass, I
an inertia, C a spring constant. Model M2: two different cross-sections are considered with J1,
J2 being the geometric moment of inertia of the drill-pipes and the bottom hole assembly (BHA),
respectively; G1, G2 the shear elastic moduli; and ρ1, ρ2 the densities of the material. At the lower
end, a concentrated inertia I2 is considered. W,W0 and T are generalised forces.
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2.1 Model M1 (2-DOF)
The axial and torsional dynamics of the model are given by (1). In that equation, U is the

position of the bit, W0 is the magnitude of the difference between the submerged weight and the
hook load and W the magnitude of a reaction force due to the bit-rock interaction, Φ is the angular
displacement of the bit, C a spring constant to account for the rigidity of the drill-pipes, I the
concentrated inertia to account for the bottom hole assembly (BHA) and T the torque-on-bit due
to the bit-rock interaction.

M
d2U

dt2
= W −W0, I

d2Φ

dt2
+ C(Φ−Θ) = T (1)

2.2 Model M2 - (semicontinuous)
The axial and torsional dynamics of M2 are modelled by (2). Recalling that in M2 the axial dy-

namics retain the same formulation used in M1. For the torsional dynamics, x1 ∈ [0, L1], and x2 ∈
[L1, L1 + L2], Gj are shear moduli, Jj are geometric moments of inertia, ρj are the material den-
sities.

M
d2U

dt2
= W −W0, GjJj

∂2Φj

∂x2
j

= ρjJj
∂2Φj

∂t2
,with j = {1, 2}. (2)

Also, the following boundary conditions in (3) are used, with Φj = Φj(xj , t) being the angular
displacement of the column, Θ(t) an imposed rotation at the top, T the torque-on-bit due to the
bit-rock interaction.

Φ1(x1 = 0, t) = −Θ(t), Φ1(x1 = L1, t) = Φ2(x2 = L1, t)

G1J1
∂Φ1

∂x1
(x1 = L1, t) = G2J2

∂Φ2

∂x2
(x2 = L1, t)

G2J2
∂Φ2

∂x2
(x2 = L1 + L2, t) = T − I2

∂2Φ2

∂t2
(x2 = L1 + L2, t)

(3)

3 The bit-rock interaction model
The elements considered in the bit-rock interaction model are depicted in Fig. 2, where a sketch

of a blunt cutter is shown. The magnitude of the forces and torques are obtained by integration
over the contact regions Af,i and Ac,i. The bit-rock formulation is based on four elements whose
functional form is depicted in Fig. 2 : a rock contact strength function σ = σ(ωb, vb), defined
in terms of two contact strength parameters σ1 and σ2, and the small regularisation constants c1
and c2; a rock intrinsic specific energy function (which should be better called a cutting strength
function) ϵ = ϵ(ωb), that depends on the intrinsic specific energy parameter ϵ1 and a regularisation
constant c3; the cutter inclination coefficient ζ; and the coefficient of friction µ. In the previous
expressions, ωb and vb are the torsional and axial speed of the bit.

For a symmetric and equiangular distribution of blades with radius ai = a, depth of cut di = d,
wearflat length li = l, for i = {1 , ... , nb}, the total force and torque for the nb blades is

W = Wc + Wf , Wc = ϵ(ω)ζadnbn, Wf = σ(ω, v)alnbn (4)

T = Tc + Tf , Tc =
1

2

a

ζ
Wc, Tf =

1

2
aµγWf (5)
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Figure 2: (a) A sketch showing the geometry of the single cutter i is shown, as well as some of the
elements that are taken into account in the bit-rock interaction model; (b) to (d) functional forms
adopted for the bit-rock parameters.

Finally, the previous expressions (4) and (5) require the calculation of the depth-of-cut, d. This
is tackled by solving an extra PDE to account for the cutting process, an advection equation.

3.1 Solving the dynamics of the cutting process

The previous forces depend on the calculation of an instantaneous depth-of-cut. Its magnitude
is obtained by solving an advection equation altogether with the previous equations of motion. If
Ls(η, t) indicates the position of the soil profile, the equation takes the form

∂Ls

∂t
+ ω

∂Ls

∂η
= 0, with η ∈

[
0,

2π

nb

]
(6)

where nb is the number of blades. The boundary conditions are

If ωb(t) ≥ 0, Ls(η = 0, t) =


U(t), Ls(η =

2π

nb
, t) < U(t)

Ls(η =
2π

nb
, t), Ls(η =

2π

nb
, t) ≥ U(t)

or if ω < 0, Ls(η =
2π

nb
, t) = Ls(η = 0, t),

(7)
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which means that cutting can only occur if the bit is rotating in the positive direction (ωb > 0).
In the previous equations, U(t) is the position of the bit. Finally, at all times the instantaneous
depth of cut is given by

di = max
{
Ls

(
η =

2π

nb
, t
)
− Ls

(
η = 0, t

)
, 0
}

(8)

4 The initial conditions

The two models admit a solution that is non-oscillatory if a constant angular speed is imposed
at the top such that Θ(t) = Ω0t. This solution is used as the initial condition in all cases, with
exception of the angular speed where a small perturbation is considered. See [2] for more details.

5 Simulations: comparison between the predictions of the
two models

Real structure Model M1 Model M2
Property Description

L1 Drill-pipe length 1000 m spring (C) 1000 m
L2 BHA length 200 m rigid 200 m
N1 Number of elements (torsion) - − 64
N2 Number of elements (advection) - 64 64
I, I2 Lumped inertia - I = 112.67 kgm2 -
C Rigidity parameter - 469.05 Nm/rad -

ρ, ρ1, ρ2 Density 7800 kg/m3

rpo Drill-pipe external radius 63.5 mm
rpi Drill-pipe internal radius 54.0 mm
rco Collar external radius 76.2 mm
rci Collar internal radius 28.0 mm

G1, G2 Shear modulus 77 GPa
a Bit radius 108.0 mm
l Drill-bit wearflat length 1.2 mm
ϵ1 Rock intrinsic specific energy 0.252 GPa
σ1 Rock contact strength 0.252 GPa
ϵ2 Rock intrinsic specific energy 0.504 GPa
σ2 Rock contact strength 0.504 GPa
M Lumped mass 24614.40 kg
Ω0 Imposed angular speed 14.42 rad/s
γ Drill-bit geometry parameter 1.00
ζ Cutter inclination coefficient 0.38
µ Coefficient of friction 0.80
c1 Regularisation constant 1 · 10−5

c2 Regularisation constant 1 · 10−1

c3 Regularisation constant 1 · 10−3

Table 1: List of parameters employed in the simulation. (*) This parameter varies.

The parameters employed in this simulation are shown in Tab. 1. A graph overlaying the
results for M2 and M1 is shown in Fig. 3, and a zoomed version is shown in Fig. 4. The behaviour
changes substantially from one model to another: it is apparent that the frequency content is
different.
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The frequency spectrum of the signal associated to the angular speed is depicted in Figs. 5 and
Fig. 6, for t > 50s, after the transient effects vanish. The results from model M1 contain a main
frequency that matches the fundamental one (0.45Hz). This is different for model M2, where the
main frequency is close to the sixth natural frequency (7.40Hz), and the amplitudes associated to
frequencies close to 0.45Hz are negligible, which explains the appreciable difference observed with
the signals in the time-domain.

With regards to the run-time of the simulations, the calculations with M1 took 1 h 49 min,
while for M2 3 h 56 min, showing an increase of 45%, recalling that 64 elements have been used
for the torsional wave equation.

6 Final considerations
Given the variety of models found in the literature, the choice of an appropriate formulation

is not obvious, especially when long columns are simulated. One of the motivations of this work
is to discuss the benefits and drawbacks of using either a low-dimensional lumped model or a
continuous one. To do this, the predictions of an established 2-DOF approach were compared with
those of another model that considers a continuous torsional formulation plus 1-DOF for the axial
dynamics. These models were named M1 and M2, respectively.

The results for the scenario that was simulated were dissimilar, as the responses did not match
either in the time domain or the frequency domain.

The semi-continuous model M2 predicted an angular speed where, in comparison with the
results with M1, higher frequencies are present. Although it has not been included due to the
constraints on the length of this article, it can be shown that model M1 is contained in model
M2 (if quasi-static assumptions are adopted, the formulation can be reduced to that of M1). In
that context, the differences show that the discrete model M1, and that of [4], are not accurate
representations of the continuous one. For this reason, the higher frequencies found with M2 provide
a hint in the direction of assuring that the 2-DOF could be an oversimplification of the problem,
and that the approach may be inadequate to capture the dynamics of a real-scale drill-string.
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Figure 5: Simulation V2. FFT of the angular
speed at the bit ω(t). Frequency range: 0 to
20Hz.
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Finally, the torsional formulation that has been used is conservative, with the exception of the
forces and torques acting at the bit. Although it is not presented here, other analyses includ-
ing other sources of dissipation, like internal damping, have been run. The results also indicate
discrepancies in the predictions that justify the use of continuous approaches.
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