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Well posedness for rabies disease epidemic models for
bovine and bats populations with spatial diffusion
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Abstract. In this paper, we study the well posedness to a SI epidemic models with spatial diffusion
for the spreading of Rabies in the Bovine population with Bats how vector. The well-posedness
of the model is proved using the Semigroup theory of sectorial operators and existence results for
abstract parabolic differential equations.
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1 Introduction

In this paper, we investigated the well posedness for a SI epidemic model with spatial diffusion
for transmission of Rabies by Bats in populations of Bovines, i. e., we show that solutions are
continuous, globally defined and non-negative. This type of study is important in future research
for qualitative and numerical studies for this system. This problem was studied in other populations
of animals, see [6, 7] and references therein, but the study of transmission of Rabies in populations
of Bovine with Bats how vector is a topic not treated in the literature.

In this section, we present some notations and results in functions spaces, semigroup of linear
operators theory, abstract differential equations and qualitative analysis of parabolic differential
equations. For more details, the reader is referred to [1, 2, 4, 5, 8, 9]. In this work, we denote by Ω
a bounded domain in R3. For 1 ≤ p ≤ ∞, the space of complex-valued Lp functions in Ω denoted
by Lp(Ω) with the usual norm ∥ · ∥Lp . The complex Sobolev space in Ω of order k, k = 0, 1, 2, . . . ,
is denoted by Hk(Ω) with norm ∥ · ∥Hk . The space of complex-valued continuous functions on Ω
is denoted by C(Ω) with norm ∥ · ∥C . Let X be a Banach space with norm ∥ · ∥, we denote by
C(Ω;X) and C1(Ω;X) the space of X-valued continuous functions and of X-valued continuously
differentiable functions, respectively. Additionally, let B(Ω;X) be the space of X-valued bounded
functions. The Sobolev space of fractional order s > 0 is denoted by Hs(Ω) with norm ∥ · ∥Hs . We
assume Ω has a C2 class boundary ∂Ω, and for 3

2 < s ≤ 2 by Hs
N (Ω) we denote a closed subspace

of Hs(Ω) such that Hs
N (Ω) = {u ∈ Hs(Ω) : ∂nu = 0 on ∂Ω} .

In what follows, for the sake of simplicity, we use the universal notation C to denote any
constant that is determined for each specific occurrence of Ω. In cases in which C also depends on
some parameter, say ξ, we use the notation Cξ.
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Let us comment on the existence theorem for local solutions to an abstract equation in a Banach
Space. We consider the following Cauchy problem for an abstract evolution equations in X{

dU

dt
+AU = F (U), 0 < t ≤ T,

U(0) = U0.
(1)

Here, A is a sectorial operator of X with angle 0 ≤ ωA < π
2 . By definition,

σ(A) ⊂ Σω = {λ ∈ C :| arg(λ) |< ω}, ωA < ω <
π

2
, (2)

and

∥ (λ−A)−1 ∥≤ Mω

| λ |
, λ /∈ Σω, ωA < ω <

π

2
. (3)

Theorem 1.1. [8, Theorem 16.7] Let A = −∆+1 be a second-order differential operator in L2(Ω)
with the Neumann boundary condition on ∂Ω. Then, the domains of the fractional powers of A is
characterized by

D(Aθ) =

{
H2θ(Ω), for 0 ≤ θ < 3

4 ,

H2θ
N (Ω), for 3

4 ≤ θ < 1,

with norm equivalence C−1
Ω ∥ u ∥H2θ(Ω)≤∥ Aθu ∥L2(Ω)≤ CΩ ∥ u ∥H2θ(Ω), u ∈ D(Aθ).

The operator A defined above generates in L2-spaces an analytic semigroup (T (t))t≥0. For θ ≥ 0
it satisfies the estimate

∥ AθT (t)w ∥L2≤ C
e−δt

tθ
∥ w ∥L2 , t > 0, w ∈ L2(Ω), (4)

with some fixed constant δ > 0. For more details see [3] and the reference there in.
Let F is a nonlinear mapping from D(Aη) into X, where 0 ≤ η < 1. F is assumed to satisfies

the Lipschitz condition of the form

∥ F (U)− F (V ) ∥ ≤ φ(∥ U ∥ + ∥ V ∥)× [∥ Aη(U − V ) ∥
+(∥ AηU ∥ + ∥ AηV ∥) ∥ U − V ∥], U, V ∈ D(Aη), (5)

and φ(·) is some increasing continuous function. The initial value U0 is taken in D(Aη). For more de-
tails about local and global theorems of existence and uniqueness of solutions for abstract parabolic
differential equations see [8].

2 The model

In this section, we introduce the epidemic model for the Rabies disease in Bovine and Bats
populations. The total of Bovine population Nb is divided into two sub-populations: Bovines that
may become infected (susceptible Sb); Bovines infected by rabies (infected Ib);

The parameter η is the birth rate of Bovine. The birth rate is assumed to be equal to natural
death. The total population of Bats Nm is divided into two sub-populations: bats which may
become infected by the disease; bats infected by the Rabies.

The parameter µ is the birth rate of the bats and it is assumed to be equal to the death rate.
A Bovine infected Ib can transmit to the susceptible Bats Sm because of an effective transmission
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with a rate κ. A bat infected Im can transmit to the a susceptible bovine Sb with a transmission
rate β.

A susceptible bat can be infected if there exists an contact with an infected bats with a rate
λ. d represents the diffusion coefficient of bats. The rate τ represents the additional mortality in
bovine population caused by Rabies transmitted by Bats. Homogeneous mixing is assumed; that
is, all susceptible Bovines have the same probability to be infected and all susceptible Bats have
the same probability to be infected.

We can describe the disease epidemic models with spatial diffusion given by the following partial
differential equations of parabolic type with Neumann condition:

S′
m = µNm + d∆Sm − κSmIb − λSmIm − µSm, in (0,∞)× Ω,
I ′m = d∆Im + κSmIb + λSmIm − µIm, in (0,∞)× Ω,
S′
b = ηNb − βSbIm − ηSb, in (0,∞)× Ω,
I ′b = βSbIm − (η + τ)Ib, in (0,∞)× Ω,

(6)

Sm(0, x) = Sm,0(x), Im(0, x) = Im,0(x), Sb(0, x) = Sb,0(x), Ib(0, x) = Ib,0(x), x ∈ Ω, (7)

Let U =


Sm

Im
Sb

Ib

 , we get the problem (6)-(7) can be formulated as abstract Cauchy problem

U ′(t) +AU(t) = F(U), t > 0, (8)
U(0) = U0 ∈ X, (9)

where

A =


−d∆+ µ 0 0 0

0 −d∆+ µ 0 0
0 0 η 0
0 0 0 η + τ

 and F(U) =


µNm − κSmIb − λSmIm

κSmIb + λSmIm
ηNb − βSbIm

βSbIm

 .

In (8)-(9), the space X is defined by X = L2(Ω)× L2(Ω)× L2(Ω)× L2(Ω) under the norm∥∥∥∥∥∥∥∥


Sm

Im
Sb

Ib


∥∥∥∥∥∥∥∥ =

(∫
Ω

| Sm |2 + | Im |2 + | Sb |2 + | Ib |2 dx
) 1

2

,

and we define the D(A) by D(A) =




Sm

Im
Sb

Ib

 ∈ X : Sm, Im ∈ H2
N (Ω) and Sb, Ib ∈ L2(Ω)

 .

2.1 Global existence, positivity of solutions
In the sequel, we show the existence of local solutions associated to the system (6)-(7).

Theorem 2.1. For each initial function data (Sm,0, Im,0, Sb,0, Ib,0) ∈ L2(Ω) × L2(Ω) × L2(Ω) ×
L2(Ω), with Sm,0, Im,0, Sb,0, Ib,0 ≥ 0. Then, the problem (8)-(9) admits a unique local-in-time
solution U = (Sm, Im, Sb, Ib) in the space U ∈ C((0, TU0

];D(A)) ∩ C1((0, TU0
];X) ∩ C([0, TU0

];X),
where TU0 is a positive constant depending only of ∥ U0 ∥ .
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Proof. Let AS and AI are realizations of operators −d∆+ µ and −d∆+ µ respectively, in L2(Ω)
under the Neumann boundary conditions on ∂Ω. It is not difficult to show A is a positive defined
self-adjoint operators of X. For 0 < θ < 1, its fractional power Aη are also diagonal operator

Aθ =


Aθ

S 0 0 0
0 Aθ

I 0 0
0 0 ηθ 0
0 0 0 (η + τ)θ

 . By [8, Theorem 16.7] and [8, Theorem 16.9], their domains

are characterized by

D(Aθ) = {t(Sm, Im, Sb, Ib) : Sm, Im ∈ H2θ(Ω) and Sb, Ib ∈ L2(Ω)}, 0 ≤ θ ≤ 3

4
,

and D(Aθ) = {t(Sm, Im, Sb, Ib) : Sm, Im ∈ H2θ
N (Ω) and Sb, Ib ∈ L2(Ω)}, 3

4 < θ ≤ 1.
Let

F(Ui) =


µNm − κSi

mI
i
b − λSi

mI
i
m

κSi
mI

i
b + λSi

mI
i
m

ηNb − βSi
bI

i
m

βSi
bI

i
m

 ,

with domain D(F) = {t(Sm, Im, Sb, Ib) : Sm, Im ∈ L∞(Ω) and Sb, Ib ∈ L2(Ω)} where tM represent
the transpose of M.

Fix an exponent such that 3
4 < θ < 1. Then, by [8, Theorem 1.36] we have D(Aθ) ⊂ D(F).

Therefore, for U1,U2 ∈ D(F).

∥ F(U1)−F(U2) ∥2 ≤ C(∥ S1
m ∥2L∞∥ I1b − I2b ∥2L2 + ∥ S1

m − S2
m ∥2L∞∥ I2b ∥2L2

+ ∥ S1
m ∥2L∞∥ I1m − I2m ∥2L2 + ∥ S1

m − S2
m ∥2L2∥ I2m ∥2L∞

+ ∥ S1
b ∥2L2∥ I1m − I2m ∥2L∞ + ∥ S1

b − S2
b ∥2L2∥ I2m ∥2L∞)

≤ C((∥ AθS1
m ∥2L2 + ∥ AθI2m ∥2L2)×

(∥ S1
m − S2

m ∥2L2 + ∥ S1
b − S2

b ∥2L2 + ∥ I1m − I2m ∥2L2 + ∥ I1b − I2b ∥2L2)

+(∥ S1
b ∥L2 + ∥ I2b ∥L2)2(∥ Aθ(S1

m − S2
m) ∥2L2 + ∥ Aθ(I1m − I2m) ∥2L2))

≤ C(∥ AθU1 ∥ + ∥ AθU2 ∥)2 ∥ U1 − U2 ∥2

+(∥ U1 ∥ + ∥ U2 ∥)2 ∥ Aθ(U1 − U2) ∥2).

By [8, Theorem 4.4], the problem (6)-(7) has a unique local solution in the function space U ∈
C((0, TU0 ];D(A)) ∩ C1((0, TU0 ];X) ∩ C([0, TU0 ];X).

Theorem 2.2. For any given initial data satisfying the condition (6)-(7), there exists a unique
solution of problem defined on t ∈ [0, TU0 ] and this solution remains nonnegative for all t ∈ [0, TU0 ].

Proof. We will show that Sm(t) ≥ 0, Im(t) ≥ 0, Sb(t) ≥ 0 and Ib(t) ≥ 0 for all 0 < t ≤ TU0
. For

this purpose, however, we have to introduce the modified nonlinear operator

F(Ũ) =


µNm − κS̃mχ(ReĨb)− λS̃mĨm

κS̃mχ(ReĨb) + λS̃mĨm
ηNb − βS̃bĨm

βS̃bĨm

 ,

where χ(u) denotes a function such that χ(u) ≡ 0 for −∞ < u < 0 and χ(u) = u for 0 ≤ u < ∞.
We have to consider the auxiliar problem

Ũ ′(t) +AŨ(t) = F(Ũ), t > 0, (10)
Ũ(0) = U0 ∈ X, (11)
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It is clear that the new nonliner operator F̃ also satisfies (5) with the same expoent θ because
∥ χ(Re u) − χ(Re v) ∥L2≤∥ u − v ∥ for u, v ∈ L2(Ω). Therefore (10)-(11) possesses a unique
local solution Ũ = (S̃m, Ĩm, S̃b, Ĩb) on an interval [0, T̃U0

] in the same functions spaces S̃m, Ĩm ∈
C([0, T̃U0

];L2(Ω)) ∩ C1((0, T̃U0
];L2(Ω)) ∩ C((0, T̃U0

];H2
N (Ω)) and S̃b, Ĩb ∈ C([0, T̃U0

];L2(Ω))∩
C1((0, T̃U0

];L2(Ω)). First, we will show that S̃m(t) ≥ 0, Ĩm(t) ≥ 0, S̃b(t) ≥ 0 and Ĩb(t) ≥ 0 for
all 0 < t ≤ T̃U0

.

We note that Ũ(t) is real-valued. Indeed, the complex conjugate Ũ(t) of Ũ(t) is also a local
solution of (10)-(11) with the same initial value U0. From the uniqueness of solutions, Ũ(t) = Ũ(t),
hence Ũ(t) is real-valued.

Let H(·) be a C1,1 cutoff function such that H(u) = u2

2 for −∞ < u < 0 and H(u) ≡ 0 for
0 ≤ u <∞. By Yagi [8] (page 52), the function ψ(t) =

∫
Ω
H(u(t))dx is continuously differentiable.

Computing the derivative of ψ(t) with u(t) = S̃m(t), we get

ψ′(t) =

∫
Ω

H ′(S̃m)S̃′
mdx =

∫
Ω

H ′(S̃m)
(
µNm + d∆S̃m − κS̃mχ(Ĩb)− λS̃mĨm − µS̃m

)
dx.

But, (by property (1.96) of [8]) we can get∫
Ω

H ′(S̃m)∆S̃mdx = −
∫
Ω

∇H ′(S̃m) · ∇S̃mdx

= −
∫
Ω

∇H ′(S̃m) · ∇H ′(S̃m)dx = −
∫
Ω

| ∇H ′(S̃m) |2 dx ≤ 0,

therefore

ψ′(t) = −d
∫
Ω

| ∇H ′(S̃m) |2 dx+ µNm

∫
Ω

H ′(S̃m)dx− κ

∫
Ω

H ′(S̃m)S̃mχ(Ĩb)dx

−
∫
Ω

H ′(S̃m)S̃m(λĨm + µ)dx.

Since H ′(S̃) ≤ 0,

ψ′(t) ≤ −
∫
Ω

H ′(S̃m)S̃m(λĨm + µ)dx ≤ C ∥ H ′(S̃m)S̃m ∥L1 (1+ ∥ Ĩm ∥L∞)

≤ C ∥ H(S̃m) ∥L1 (1+ ∥ S̃m ∥L∞ + ∥ Ĩm ∥L∞ + ∥ Ĩb ∥L2 + ∥ Ĩb ∥L∞)

≤ C ∥ H(S̃m) ∥L1 (1+ ∥ S̃m ∥H2θ + ∥ Ĩm ∥H2θ + ∥ S̃b ∥L2 + ∥ Ĩb ∥L2)

= Cψ(t)(1+ ∥ S̃m ∥H2θ + ∥ Ĩm ∥H2θ + ∥ S̃b ∥L2 + ∥ Ĩb ∥L2).

Therefore ψ′(t) ≤ Cψ(t)(1+ ∥ AηŨ(t) ∥). Thus, by Lemma Gronwall,

ψ(t) ≤ ψ(0)eC
∫ t
0
(1+∥AθŨ(τ)∥)dτ .

Using the bound ∥ AθŨ(τ) ∥≤ CU0
τ−θ, which means that ∥ AθŨ(τ) ∥ is integrable in 0 ≤ t ≤ T̃U0

.
Hence, ψ(0) = 0 implies ψ(t) ≡ 0, namely S̃m(t) ≥ 0 for 0 ≤ t ≤ T̃U0 .

Now, computing the derivative of ψ(t) with u(t) = Ĩm(t)

ψ′(t) =

∫
Ω

H ′(Ĩm)
(
d∆Ĩm + κS̃mχ(Ĩb) + λS̃mĨm − µĨm

)
dx = −d

∫
Ω

| ∇H ′(Ĩm) |2 dx

+κ

∫
Ω

H ′(Ĩm)S̃mχ(Ĩb)dx− 2λ

∫
Ω

H(Ĩm)S̃mdx− 2µ

∫
Ω

H(Ĩm)dx ≤ 0.
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By H(Ĩm) ≥ 0 and H ′(Ĩm) < 0 we get ψ′(t) ≤ 0. From ψ(0) = 0, we get ψ(t) ≡ 0, this
implies Ĩm(t) ≥ 0 for 0 ≤ t ≤ T̃U0

. For ψ(t) with u(t) = S̃b(t) we have ψ′(t) =
∫
Ω
H ′(S̃b)S̃

′
b(t)dx =∫

Ω
H̃ ′(Sb)

(
ηNb − βS̃bĨm − ηS̃b

)
dx ≤ 0.

From the same argument before, we get S̃b(t) ≥ 0 for 0 ≤ t ≤ T̃U0
. For ψ(t) with u(t) = Ĩb(t)

we have ψ′(t) =
∫
Ω
H ′(Ĩb)Ĩ

′
b(t)dx =

∫
Ω
H̃ ′(Ib)

(
βS̃bĨm − (η + τ)Ĩb

)
dx ≤ 0. therefore Ĩb(t) ≥ 0 for

0 ≤ t ≤ T̃U0
.

We now notice χ(Ĩb(t)) = Ĩb(t), this implies Ũ is a local solution of the original problem (8)-(9)
too. The uniqueness of solution then implies Ũ = U . Hence Sm(t) ≥ 0, Im(t) ≥ 0, Sb(t) ≥ 0 and
Ib(t) ≥ 0 for 0 < t ≤ T̃U0

.Now we have the possibilities: If T̃U0
≥ TU0

we finished the proof. If not, we
define T0 = sup{0 < T ≤ TU0

: Sm(t) ≥ 0, Im(t) ≥ 0, Sb(t) ≥ 0 and Ib(t) ≥ 0 for every 0 < t ≤ T}.
From ∫

Ω

H(Sm(T0))dx = lim
t→T−

0

∫
Ω

H(Sm(t))dx = 0,

we see that Sm(T0) ≥ 0. By similar argument, we have Im(T0) ≥ 0, Sb(T0) ≥ 0 and Ib(T0) ≥ 0.
So if, T0 = TU0

, we finished the proof. If T0 < TU0
, we will consider again the problem (10) but

with the initial time T0 and the initial value U(T0). Repeating the same argument as above, we
conclude that there is δ > 0 such that Sm(t) ≥ 0, Im(t) ≥ 0, Sb(t) ≥ 0 and Ib(t) ≥ 0 for every
T0 ≤ t ≤ T0 + δ. This is a contradiction, hence T0 = TU0

. The above arguments implies the
nonnegativity of solutions for all 0 ≤ t ≤ TU0 .

2.2 Boundedness of solutions

Now we show the existence of global solutions for the problem (6)-(7).

Theorem 2.3. For any given initial data satisfying the condition (6)-(7), there exists a unique
solution of problem defined on [0,∞) and this solution remains nonnegative and bounded for all
t ≥ 0.

Proof. How Sm, Im, Sb and Ib ∈ C([0, TU0
];L2(Ω)) we have Sm, Im, Sb and Ib is bounded in L2

norm in [0, T ] with T < TU0 . For all t ≥ T, we have∫
Ω

SmS
′
mdx =

∫
Ω

dSm∆Smdx+

∫
Ω

µNmSm − µS2
m − κS2

mIb − λS2
mImdx,∫

Ω

ImS
′
mdx =

∫
Ω

dIm∆Smdx+

∫
Ω

µNmIm − µImSm − κImSmIb − λSmI
2
mdx,∫

Ω

ImI
′
mdx =

∫
Ω

dIm∆Imdx+

∫
Ω

κSmImIb + λSmI
2
m − µI2mdx,∫

Ω

SmI
′
mdx =

∫
Ω

dSm∆Imdx+

∫
Ω

κS2
mIb + λS2

mIm − µSmImdx.

Therefore

1

2

d

dt

∫
Ω

(Sm + Im)2dx = −
∫
Ω

d | ∇Sm +∇Im |2 dx+

∫
Ω

µNm(Sm + Im)− µ(Sm + Im)2dx

≤ −
∫
Ω

(√
µ

2
(Sm + Im)− 1

2

√
2

µ
µNm

)2

dx− µ

2

∫
Ω

| Sm + Im |2 dx+

∫
Ω

µN2
m

2
dx

≤ −µ
2

∫
Ω

| Sm + Im |2 dx+
µN2

m

2
| Ω | .

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 10, n. 1, 2023.

DOI: 10.5540/03.2023.010.01.0117 010117-6 © 2023 SBMAC

http://dx.doi.org/10.5540/03.2023.010.01.0117


7

By Lemma Gronwall, ∥ Sm(t) + Im(t) ∥2L2≤∥ Sm(0) + Im(0) ∥2L2 e−µt +
N2

m

µ | Ω | . From Sm(t) ≥ 0

and Im(t) ≥ 0, follows that ∥ Sm(t) ∥2L2 + ∥ Im(t) ∥2L2≤∥ Sm(0) + Im(0) ∥2L2 e−µt +
N2

m

µ | Ω | .∫
Ω

SbS
′
bdx =

∫
Ω

ηNbSb − βS2
b Im − ηS2

bdx,

∫
Ω

IbS
′
bdx =

∫
Ω

ηNbIb − βIbSbIm − ηIbSbdx,∫
Ω

IbI
′
bdx =

∫
Ω

βIbSbIm − (η + τ)I2b dx,

∫
Ω

SbI
′
bdx =

∫
Ω

βS2
b Im − (η + τ)SbIbdx.

Therefore

1

2

d

dt

∫
Ω

(Sb + Ib)
2dx ≤

∫
Ω

ηNb(Sb + Ib)− η(Sb + Ib)
2dx

≤ −
∫
Ω

(√
η

2
(Sb + Ib)−

1

2

√
2

η
ηNb

)2

dx− η

2

∫
Ω

| Sb + Ib |2 dx+

∫
Ω

ηN2
b

2
dx

≤ −η
2

∫
Ω

| Sb + Ib |2 dx+
ηN2

b

2
| Ω | .

By Lemma Gronwall, ∥ Sb(t) + Ib(t) ∥2L2≤∥ Sb(0) + Ib(0) ∥2L2 e−ηt +
N2

b

η | Ω | . From Sb(t) ≥ 0 and

Ib(t) ≥ 0, we get that ∥ Sb(t) ∥2L2 + ∥ Ib(t) ∥2L2≤∥ Sb(0) + Ib(0) ∥2L2 e−ηt +
N2

b

η | Ω | . The result
now is consequence of the [8, Corollary 4.3].
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