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Caputo Derivative as Weighted Average of Historical
Values: some consequences illustrated via COVID-19 data
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Abstract. This paper uses the formula previously proposed by the authors themselves, in which the
Caputo fractional derivative is written proportionally to the weighted average of historical values
of the classical derivative (Equation (2)). Three consequences of this formula are treated in this
work. The first explicitly shows the dimension of the Caputo derivative, the second indicates which
historical values of the classical derivative have greater/lower weight for the Caputo operator at the
current instant, and finally, the third shows that the Caputo derivative is zero at instants after the
critical point occurred (allowing interpretations for the order of the derivative, for example in the
dynamics of some disease). To illustrate these three results, we used examples previously obtained
by the authors themselves, modeling the curve of active COVID-19 cases with the SIR model. This
approach captures the memory effect well in epidemiological models.
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1 Introduction
Fractional calculus is an interesting area, primarily because it generalizes classical calculus.

Furthermore, it is possible to show that operators such as Riemann-Liouville integral and derivative
and Caputo derivative have a memory effect in their composition. The Caputo derivative is an
general choice for mathematical modeling since it has the property that the derivative of a constant
is zero, which generally does not occur with other fractional operators. Another advantage of the
Caputo derivative is that, in initial value problems with Caputo fractional differential equations,
the initial data can be the same as in its version with ordinary differential equations [2, 9].

As memory is present in many phenomena, especially in biomathematics, fractional calculus
provides a interesting description of actual data. Furthermore, a system with fractional differential
equations has one more parameter that can even be fitted: the order of the derivative. Thus,
we have several possible solutions, increasing the chance of finding the ideal one to model the
desired phenomenon. Furthermore, the effect of neglected parameters in usual modeling can be
incorporated into the order of the derivative [2, 4, 6, 9].
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In the fractional calculus literature, there are some approaches to verify the memory effect in
operators or fractional systems, as we see for example in [7, 8]. In this paper, we remember a
formula presented for the first time by the authors themselves in [1] that shows more explicitly the
memory effect in Caputo fractional derivative (Equation (2)). Through it, the Caputo derivative
is written as proportional to the mean (through statistical expectation), weighted by the Beta
distribution, of historical values of the classical derivative.

The main objective of this work is, after remembering the equation that indicates the memory
effect in the Caputo derivative published by the authors in [1, 5], to show three interesting results
that we can obtain from this formula: the explicit elaboration of the dimensional analysis of the
fractional derivative, the possibility of observing how the weighted average works and, finally, the
fact that the Caputo derivative is not zero at the critical point of the function. We do this in
Section 2 and we illustrate the results in Section 3, using an application also already made by the
authors in [1, 5], with the SIR epidemiological model to study active cases of COVID-19.

2 Results on Caputo Fractional Derivative

From the definitions of the Riemann-Liouville fractional derivative and integral [7], we can
define the Caputo derivative as follows, for f ∈ ACloc([a,∞),R):

(cDα
a+f)(t) =

1

Γ(1− α)

∫ t

a

(t− s)−αf ′(s)ds, ∀t ∈ (a,∞). (1)

Previously, the authors demonstrated that Caputo fractional derivative can be written as in
the Equation (2), that is, proportional to a weighted average of the past values of the classical
derivative of the operated function:

cDα
t f(t) =

t1−α

Γ(2− α)
E [f ′(tW )] , if 0 < α < 1, (2)

where W is a random variable with the beta distribution W ∼ B(1, 1− α).
The proof follows by the change of variable w = s

t [1, 5]:

cDα
t f(t) =

1

Γ(1− α)

∫ t

0

(t− s)−αf ′(s)ds =
1

Γ(1− α)

∫ t

0

t−α
(
1− s

t

)−α

f ′(s)ds

=
1

Γ(1− α)

∫ 1

0

t1−α (1− w)
−α

f ′(tw)dw

=
t1−α

(1− α)Γ(1− α)

∫ 1

0

(1− w)
(1−α)−1

B(1, 1− α)
f ′(tw)dw =

t1−α

Γ(2− α)
E[f ′(tW )]. (3)

In [1, 5] it is possible to see formulas that relate Riemann-Liouville fractional derivative and
integral operators with weighted averages of historical values as well.

The Formula (2) highlights the memory effect on this fractional operator. Furthermore, this
formula has interesting consequences, some of which we show in the following subsections.

2.1 Dimensional Analysis of the Caputo Derivative

A first useful consequence that follows directly from Equation (2) is the dimensional analysis
of the Caputo derivative. In [2] it is stated that it is necessary to make changes in the differential
equation with the Caputo derivative (for example, raising parameters to α) to obtain a correct
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dimensional analysis since this derivative has dimension (time)−α (that is, T−α). In this subsection,
we show this explicitly through the Formula (2). An example is described in Subsection 3.1.

If f represents population (with dimension P ), let us show that cDα
t f(t) has dimension P

Tα .
Note that the Equation (2) can be rewritten as follows:

cDα
t f(t) = Γ(2− α)

[
E [f ′(tW )]

tα−1

]
. (4)

We know that in calculating the average of values, they must have the same dimension. Thus, the
average of values of f ′(t) (given by E [f ′(tW )]) has dimension P

T , as does f ′(t). Since 1
tα−1 has

dimension 1
Tα−1 , then cDα

t f(t) has dimension P/T
Tα−1 = P

Tα .
The same reasoning follows for the case of f having another dimension or being dimensionless.

2.2 Influence of Beta Distribution on Fractional Operators of Order α

Since each historical value of f ′(t) (before t) acts differently to define the Caputo derivative
operator at the current instant t, according to the distribution B(1, 1 − α), we investigate which
of them most contribute to these operators in relation to the order α ∈ (0, 1).

From the Formula (2), it can be seen that values close to t contribute more to defining the
current instant than remote values (those evaluated for times close to t = 0). This is justified by

the fact that the probability density function fW (w) =
(1− w)−α

B(1, 1− α)
is increasing when 0 < α < 1.

In Figure 1 we see that in any scenario the recent values (i.e., when w ≃ 1) have greater
weight than the historical values (i.e., when w ≃ 0). However, the difference between such weights
increases the closer the value of α is to 1, and decreases the smaller the value of α is.

Figure 1: The density function fW with historical weight distribution for the Caputo derivative.

This allows us to conclude that when α ∼ 1 the memory effect is small, since historical values
become less important compared to recent values. On the other hand, if α ∼ 0 the historical values
become more significant, characterizing a greater memory effect.

2.3 When Caputo Derivative is Zero
In this section we show another interesting interpretation that we can make directly of the

Formula (2): the Caputo derivative is zero at an instant tα (for each value of α ∈ (0, 1)) after
the instant t∗ where the critical point occurs. That is, through the fractional derivative it is not
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possible to analyze the equilibrium of the function in the classical way and, moreover, the derivative
is zero when the critical point has already occurred.

In classical calculus it is common to analyze the growth of a function through its derivative.
However, through Formula (2) it is possible to show that the Caputo fractional derivative is not
always positive when the curve is increasing and negative when the curve is decreasing. Conse-
quently, when this derivative is null, we do not necessarily have inflection point of the function.

Let us assume that f has only one local critical point at t∗ ∈ [0, b]. If
cDα

t f(tα) = 0, for some tα ∈ [0, b], then for (2) we have E[f ′(tαW )] = 0. Hence, there are
t1, t2 ∈ [0, tα] such that f ′(t1) > 0 and f ′(t2) < 0. Thereby, t1 < t∗ < t2, if the critical point is a
local maximum point, or t2 < t∗ < t1, if it is a local minimum point. Therefore, t∗ ∈ (0, tα), that
is, at tα the critical point has already occurred.

Example 2.1. Let f(t) = t − t2. Then, f ′(t) = 1 − 2t. This function has a single critical point
(local maximum point) at t∗ = 1

2 . To determine cDα
t f(t), we use Equation (2). Due to the linearity

of the operator cDα
t , we have

cDα
t f(t) = cDα

t (t− t2) =
t1−α

Γ(2− α)

[
1− 2t

2− α

]
. (5)

Thus, cDα
t f(tα) = 0 ⇔ tα = 0 or tα = 1− α

2 . First, from (2) it is worth noting that in t = 0 we
always have cDαf(t) = 0, not indicating an inflection point. Excluding this case, note that when
α = 1 we have tα = 1 − 1

2 = t∗ and, if α < 1, then tα > t∗. That is, the time tα in which the
fractional derivative is null occurs after the time t∗ in which the classical derivative is null, which
is where the local maximum point occurs.

This is best illustrated in Figure 2, where we see the Caputo derivative curves cDα
t f(t) for

different values of α, including the case α = 1. It is possible to see that in fact the classical
derivative reaches zero at an earlier time, and the smaller the value of α is, the longer the time for
the fractional derivative to be null. We see that, in fact, in t∗ = 0.5 only the classical derivative
(α = 1) is null. Also, corroborating the results presented above, we see that the fractional derivative
is positive for values of t such that f(t) is decreasing.
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Figure 2: Fractional derivative curves cDα
t (t− t2) for different orders α.

The fact that Caputo derivative is not necessarily zero at critical points (local maximum or min-
imum points) means that equilibria of fractional differential equations do not necessarily coincide
with points where Caputo derivative is equal to zero.

In the following section, we use the Caputo derivative to include memory effect in the SIR
epidemiological model, studying data from active cases of COVID-19. With this, we illustrate the
concepts presented in this section.
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3 Fractional SIR Model: an application to COVID-19

In the works [1, 5] the authors used Caputo fractional derivative to include the memory effect in
the SIR (Susceptible-Infected-Recovered) epidemiological model, obtaining the following system. cDα

t S(t) = −βαS(t)I(t)
cDα

t I(t) = βαS(t)I(t)− γαI(t)
cDα

t R(t) = γαI(t)
, (6)

where β is the transmission rate, γ is the recovery rate [3], and α ∈ (0, 1) is the fractional derivative
order.

3.1 Dimensional analysis of the model (6)

In Subsection 2.1 we saw that the Caputo derivative has dimension T−α. Furthermore, we
saw that if f represents population (as is the case with functions S, I and R), then cDα

t f(t) has
dimension P

Tα .
Knowing that each term given to the right side in the equations of the system (6) must have

the same dimension as the term given to the left side (dimension P
Tα ), it is not right to include

memory in the SIR model just by replacing the classical derivative with the fractional derivative,
since the dimension of the terms on the right side does not correspond to that of the left side. For
a correct dimensional analysis, one possibility is to raise the parameters β and γ to the value α.
It is through this path that the formulation of the model (6) is obtained.

3.2 Greater efficiency of the fractional model and the memory effect
from the order of the derivative

In [1, 5] the authors compare the classic version of the SIR model with the fractional version
(with memory) to describe active cases of COVID-19 in some countries, using least squares data
fit for both models. In this subsection, we recall the results obtained by them, to emphasize the
advantage of using the Caputo derivative in epidemiological models, and we use these results as
an example to identify the memory effect through the order α of the fractional derivative.

In [1, 5] it was shown that the fractional model is a good tool to study the phenomenon when
there is a memory effect in the process. In Figures 3 and 4, we see the results obtained for the
first “wave” of China and South Korea, where the actual data are represented by the blue dots,
the solution of the classic model is given by the black continuous curve and the solution of the
fractional model is given by the red dashed curve. Data were obtained from [10], since January
22, 2020 in the case of China and since February 15, 2020 in the case of South Korea.

These examples are enough to show that when there is a memory effect (α < 1) the fractional
model fits the actual data better than the classic model. Figure 3 (obtained with α = 0.7607)
shows this clearly and we can also prove it by calculating the mean squared error: in the classic
case the error is approximately 0.1402 while in the fractional case it is approximately 0.0061.

We also chose the case of China, as we see in Figure 4, as it is a case where the fractional model
did not fit data better than the classic one (but not worse either, since it generalizes the other),
representing a scenario without effect of memory. The value α ∼ 1 in the case of China shows
that the memory effect is almost nonexistent at this stage of the pandemic (first “wave”), that is,
it shows that recent information was more significant than information from the past. This makes
sense, since the isolation in China began at a time when nothing was known about the disease, as
it is in this country where the first cases appeared. Thus, they had no information from the past,
so memory could not yet be present.
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Figure 3: Solutions of the classic and fractional models for COVID-19 in South Korea. For the classic
model, β = 0.4047 and γ = 0.1071. For the fractional model, β = 0.5499, γ = 0.1055 and α = 0.7607.

Figure 4: Solutions of the classic and fractional models for COVID-19 in China. For the classic model,
β = 0.3591 and γ = 0.0907. For the fractional model, β = 0.3613, γ = 0.0907 and α = 0.9937.

On the other hand, in South Korea there was already some information that could be used
to take measures to contain the pandemic, based on what had already been experienced in other
countries such as China. That is, the memory effect was already present.

Therefore, the smaller the value of α, the greater the memory effect, which illustrates the
concept presented in Subsection 2.2. Moreover, as it is a scenario with memory (α < 1), we see
that the fractional model is more efficient than the classic model.

4 Final Considerations
Fractional calculus provides good tools for mathematical modeling because of its ability to

include memory effects in dynamics. This fact is explicitly proven by Equation (2) for the case
of Caputo fractional derivative, where we see that this operator is proportional to the weighted
average of historical values of the classical derivative.
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Furthermore, the Equation (2) allows us to conclude more interesting facts:

• Equation (4) (obtained through Equation (2)) shows the dimension of the Caputo derivative;

• Through the probability density function of the weighted average that describes the Caputo
derivative, it is possible to observe which historical values of the classical derivative have
greater weight to obtain the current instant, according to the value of α ∈ (0, 1);

• The Equation (2) shows that the Caputo derivative is not zero at the critical point and, even
more, shows that when it is zero (in tα) the critical point (in t∗) has already occurred;

• From the comments above, we note that the difference between the value of tα and t∗ increases
as α decreases, and the value α may be related to the efficacy of the measures adopted. The
lower the α is, the less effective these measures are, and the past occurrences interfere with
the current dynamics of the disease for longer.
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