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Calculation of Green’s Function for Poisson’s Equation in
Plane Polar Coordinates using Eigenfunction Expansion in

the Angular Variable

Roberto Toscano Couto1
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Abstract. A new calculation of Green’s function for the problem with Poisson’s equation in plane
polar coordinates is presented. The method consists in calculating the solution of a problem that is
simpler but that has the same Green’s function – the problem that results from the homogenization
of the boundary conditions – and then inferring Green’s function by comparing this calculated
solution with Green’s formula for the solution. To describe the method, it is applied to the particular
case of a disc sector under mixed Dirichlet-Neumann boundary conditions. The solution of the
simplified problem is obtained as an eigenfunction expansion in the angular variable. Green’s
function arises from the calculations as an infinite series but is finally presented in closed form
because it is possible to compute the sum of this series.
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1 Introduction

This work aims to describe a new method for calculating Green’s function for a boundary value
problem based on the Poisson’s equation expressed in the plane polar coordinates and to present
it in closed form. To explain the method, we consider the domain Ω of the problem to be the disc
sector shown in Figure 1 as well as the boundary conditions to be those indicated there: Dirichlet’s
on the rectilinear boundary along the x-axis and on the circular boundary, and Neumann’s on the
other rectilinear boundary. This problem is formulated as follows:

∇2u(r, θ) =
∂2u

∂r2
+
1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= h(r, θ) with r ∈ (0, b) and θ ∈ (0, γ) ,

u(r, 0) = f0(r) if r ∈ [0, b) ,
∂u

∂θ
(r, γ) = gγ(r) if r ∈ (0, b) , u(b, θ) = fb(θ) if θ ∈ [0, γ] .

(1)

where the functions f0, fb, gγ , and h are continuous, and we want a continuous u in Ω ∪ ∂Ω .
Section 2 describes the main steps of the method. Section 3 presents the application of the

method to calculate Green’s function for problem (1). Section 4 shows how to compute the sum
of the infinite series in the Green’s function expression calculated in Section 3 to finally present it
in closed form. Section 5 contains a comparison of this closed-form Green’s function with the one
provided by the method of images for the particular case when γ = π/2 . Section 6 ends the body
of the paper with final comments.
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Figure 1: The problem solved in this work: that in (1).

2 Description of the Main Steps of the Method
The method developed in this work takes advantage of the fact that Green’s function of problem

(1) does not depend on the functions f0, fb, gγ , and h [3, sec.2.2.4]. Then, to calculate it, we
consider the following simplified version of the problem, in which all boundary conditions are
homogenized:

∇2v(r, θ) =
∂2v

∂r2
+

1

r

∂v

∂r
+

1

r2
∂2v

∂θ2
= h(r, θ) with r ∈ (0, b) θ ∈ (0, γ) ,

v(r, 0) = 0 if r ∈ [0, b) ,
∂v

∂θ
(r, γ) = 0 if r ∈ (0, b) , v(b, θ) = 0 if θ ∈ [0, γ] .

(2)

a) The first step of the method is the calculation of the solution v of the above problem. In
this work, we solve it by the method of eigenfunction expansion. We write

v(r, θ) =
∑

n=1,3,5···
vn(r) sin

nπθ

2γ
, (3)

that is, we admit that the solution to problem (2) can be expanded into the eigenfunctions Θn(θ) =
sin(nπθ/2γ) (n = 1, 3, 5 · · · ) [1, sec.10.1, Prob.19, p.595&786] that arise when the separation of
variables v(r, θ) = R(r)Θ(θ) is used to solve problem (2) in the particular case where h(r, θ) ≡
0 (Laplace’s equation) and the homogeneous condition on the circular boundary (at r = b) is
replaced by a nonhomogeneous one. Notice that, as a consequence of the chosen eigenfunctions,
(3) automatically satisfies the conditions of problem (2) on the boundaries at θ = 0 and θ = γ.

With the substitution of (3) into the partial differential equation (PDE) and into the boundary
condition in (2) that remains to be satisfied (that at r = b) one obtains a one-dimensional boundary
value problem for vn(r) : an nonhomogeneous ordinary differential equation (ODE) under a homo-
geneous Dirichlet condition. After solving this one-dimensional problem for vn(r) , we substitute
its solution into (3) to complete the calculation of the solution v(r, θ) to problem (2).

b) The second step is the determination of Green’s function G(r⃗ |r⃗ ′) = G(r, θ | r′, θ′) for prob-
lem (1) from the solution v(r⃗ ) = v(r, θ) of problem (2) calculated in the previous step. This is
done as follows: Since Green’s formula for the solution v(r, θ) to problem (2) is simply given by
{cf. Ref. [5], eq.(1.42), which is here adapted to two dimensions}

v(r, θ) = − 1

2π

∫∫
Ω

G(r⃗ |r⃗ ′)h(r⃗ ′) dA′ = − 1

2π

∫ γ

0

dθ′
∫ b

0

dr′ r′ h(r′, θ′)G(r, θ | r′, θ′) , (4)

it is possible to infer an expression for G(r, θ | r′, θ′) by writing the already calculated solution
v(r, θ) in the form of the double integral on the right side of this equation. We will see that this
writing is not an automatic task, requiring some artifices in the first step.
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c) A third step is still necessary, because the Green’s function expression obtained in the second
step still involves an infinite series. We need, therefore, to evaluate the sum of this series to obtain
Green’s function in closed form.

3 Application of the Method
Now we apply the method to calculate Green’s function of problem (1). The first step is to

solve problem (2) by substituting (3) into the PDE of this problem; we get∑
n=1,3,5···

[
v′′n +

1

r
v′n − (nπ/2γ)2

r2
vn

]
sin

nπθ

2γ
= h .

This result shows that the terms in brackets for n = 1, 3, 5 · · · are the coefficients of a generalized
Fourier sine series of the function h ; therefore,

v′′n +
1

r
v′n − (nπ/2γ)2

r2
vn(r) =

2

γ

∫ γ

0

h(r, θ) sin
nπθ

2γ
dθ ≡ hn(r) . (5)

We thus see that vn(r) is the solution of a nonhomogeneous Euler-Cauchy ODE [4, sec. 1.6].
Since the general solution of the associated homogeneous equation is

vHn(r) = c1nr
nπ/2γ + c2n/r

nπ/2γ ,

a particular solution by the method of variation of parameters [4, sec. 1.9] has the form

vPn(r) = An(r)r
nπ/2γ +Bn(r)/r

nπ/2γ , (6)

where the functions An(r) and Bn(r) are solutions of the system of equations{
A′

nr
nπ/2γ +B′

n/r
nπ/2γ = 0

(nπ/2γ)A′
nr

(nπ/2γ)−1 − (nπ/2γ)B′
n/r

(nπ/2γ)+1 = hn .

Solving it, we get

A′
n(r) =

γhn(r)

nπr(nπ/2γ)−1
⇒ An(r) =

γ

nπ

∫ r

0

hn(r
′)

r′(nπ/2γ)−1
dr′ ,

B′
n(r) = −γhn(r) r

(nπ/2γ)+1

nπ
⇒ Bn(r) = − γ

nπ

∫ r

0

hn(r
′)r′

(nπ/2γ)+1
dr′ .

Using these results in (6), we can write the general solution vHn(r) + vPn(r) of (5) as

vn(r) =

[
c1n +

γ

nπ

∫ r

0

hn(r
′)

r′(nπ/2γ)−1
dr′

]
rnπ/2γ +

[
c2n − γ

nπ

∫ r

0

hn(r
′)r′

(nπ/2γ)+1
dr′

]
1

rnπ/2γ
. (7)

To determine c1n and c2n, we impose the conditions of the problem, first the one related to
continuity. To prevent (7) from becoming infinite when r → 0, it is necessary that

lim
r→0

[
c2n − γ

nπ

∫ r

0

hn(r
′)r′

(nπ/2γ)+1
dr′

]
= 0 ⇒ c2n = 0 .

With this result, (7) becomes

vn(r) =

[
c1n +

γ

nπ

∫ r

0

hn(r
′)

r′(nπ/2γ)−1
dr′

]
rnπ/2γ +

[
− γ

nπ

∫ r

0

hn(r
′)r′

(nπ/2γ)+1
dr′

]
1

rnπ/2γ
. (8)
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Now we require that (8) satisfies the condition

vn(b) = 0 , (9)

which results from the substitution of (3) into the condition v(b, θ) = 0 given in (2). We obtain

c1n =
γ

nπ

∫ b

0

dr′r′hn(r
′)

[( r′

b2

)nπ
2γ −

( 1

r′

)nπ
2γ

]
.

Using this expression for c1n in (8), we can write vn(r) as follows:

vn(r) =
γ

nπ

∫ b

0

dr′r′hn(r
′)

[(rr′
b2

)nπ
2γ −

( r

r′

)nπ
2γ

]
+

γ

nπ

∫ r

0

dr′r′hn(r
′)

[( r

r′

)nπ
2γ −

(r′
r

)nπ
2γ

]
. (10)

This expression of vn(r) is not suitable to express v(r, θ) in the form of the double integral in
(4), because, in that double integral, the interval of integration with respect to r′ is [0, b], whereas,
in the second integral above, it is [0, r]. To overcome this difficulty we derive another expression of
vn(r) with a slightly different form as follows: Since the lower limit of integration of the indefinite
integrals in (7) is an arbitrary point of [0, b], we choose it now to be b (instead of 0) to obtain the
following equivalent expression for the general solution of (5):

vn(r) =

[
d1n+

γ

nπ

∫ r

b

hn(r
′)

r′(nπ/2γ)−1
dr′

]
rnπ/2γ +

[
d2n−

γ

nπ

∫ r

b

hn(r
′)r′

(nπ/2γ)+1
dr′

]
1

rnπ/2γ
. (11)

As before, to prevent this expression from becoming infinite as r → 0, it is necessary that

lim
r→ 0

[
d2n − γ

nπ

∫ r

b

hn(r
′)r′

(nπ/2γ)+1
dr′

]
= 0 ⇒ d2n =

γ

nπ

∫ 0

b

hn(r
′)r′

(nπ/2γ)+1
dr′ ,

and, by imposing condition (9) on (11) and then substituting the above expression for d2n, we get

vn(b) = d1nb
nπ/2γ +

d2n
bnπ/2γ

= 0 ⇒ d1n = − γ

nπ(b2)nπ/2γ

∫ 0

b

hn(r
′)r′

(nπ/γ)+1
dr′ .

Using these results for d1n and d2n in (11), we can write the following expression for vn(r):

vn(r) =
γ

nπ

∫ b

0

dr′r′hn(r
′)

[(rr′
b2

)nπ
2γ −

(r′
r

)nπ
2γ

]
+

γ

nπ

∫ b

r

dr′r′hn(r
′)

[(r′
r

)nπ
2γ −

( r

r′

)nπ
2γ

]
. (12)

Now we have (10) and (12) expressing vn(r). The idea is to add these two equations and then
replace the sum of the integrals

∫ r

0
dr′ and

∫ b

r
dr′ with the single integral

∫ b

0
dr′, whose interval of

integration is the one in (4). Note, however, that the integrands of these two integrals are not
exactly the same; but since one becomes the other by replacing r/r′ with r′/r, one way to make
these two integrals display the same integrand is to define

r< (r>) ≡ the smaller (larger) of r and r′ . (13)

In fact, with this notation, because r = r> and r′ = r< in the integral
∫ r

0
dr′, and r = r< and

r′ = r> in
∫ b

r
dr′, we have that (10) and (12) are respectively given by

vn(r) =
γ

nπ

∫ b

0

dr′r′hn(r
′)

[(rr′
b2

)nπ
2γ −

( r

r′

)nπ
2γ

]
+

γ

nπ

∫ r

0

dr′r′hn(r
′)

[(r>
r<

)nπ
2γ −

(r<
r>

)nπ
2γ

]
and

vn(r) =
γ

nπ

∫ b

0

dr′r′hn(r
′)

[(rr′
b2

)nπ
2γ −

(r′
r

)nπ
2γ

]
+

γ

nπ

∫ b

r

dr′r′hn(r
′)

[(r>
r<

)nπ
2γ −

(r<
r>

)nπ
2γ

]
.
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Therefore, adding these two equations, and again using (13), we get the proper form of the expres-
sion of vn(r) to be used in (3):

2 vn(r) =
γ

nπ

∫ b

0

dr′r′hn(r
′)

[
2
(rr′
b2

)nπ
2γ −

(r<
r>

)nπ
2γ −

�
�

�
��(r>

r<

)nπ
2γ

]
+

γ

nπ

∫ b

0

dr′r′hn(r
′)

[
�

�
�
��(r>

r<

)nπ
2γ −

(r<
r>

)nπ
2γ

]
,

⇒ vn(r) =
γ

nπ

∫ b

0

dr′r′hn(r
′)

[(rr′
b2

)nπ
2γ −

(r<
r>

)nπ
2γ

]
.

Taking this result into (3) and using the defining expression for hn given in (5), we get

v(r, θ) =
∑

n=1,3,5···

{
γ

nπ

∫ b

0

dr′r′
(
2

γ

∫ γ

0

dθ′h(r′, θ′) sin
nπθ′

2γ

)[(rr′
b2

)nπ
2γ −

(r<
r>

)nπ
2γ

]}
sin

nπθ

2γ

= − 1

2π

∫ γ

0

dθ′
∫ b

0

dr′r′h(r′, θ′)
∑

n=1,3,5···

4

n

[(r<
r>

)nπ
2γ −

(rr′
b2

)nπ
2γ

]
sin

nπθ′

2γ
sin

nπθ

2γ︸ ︷︷ ︸
G(r,θ | r′,θ′)

,

from which, by comparison with (4), we infer the expression for G(r, θ | r′, θ′) indicated above:

G(r, θ | r′, θ′) =
∑

n=1,3,5···

4

n

[(r<
r>

)nπ
2γ −

(rr′
b2

)nπ
2γ

]
sin

nπθ′

2γ
sin

nπθ

2γ
. (14)

4 Green’s Function in Closed Form
To derive Green’s function in closed form we need to calculate the sum of the infinite series in

(14). To this end, using the definition z ≡ p eiφ , from which zn = pneinφ = pn cosnφ+ ipn sinnφ ,
we first evaluate the sum of the following infinite series:∑

n=1,3,5···

1

n
pn cosnφ︸ ︷︷ ︸

Re zn

= Re
∞∑

k=0

z2k+1

2k + 1
= Re

∫ z

0

[ ∞∑
k=0

(ζ2)k
]
dζ = Re

∫ z

0

1

1− ζ2
dζ =

Re
[ 1

2
ln(z + 1)− 1

2
ln(z − 1)

]
=

1

2
ln |z + 1|− 1

2
ln |z − 1| =

1

4
ln

1 + p2 + 2p cosφ

1 + p2 − 2p cosφ
(0 ≤ p < 1) ,

where, to find the sum of the infinite series between square brackets, we used the formula for the
sum of a geometric series (noticing that |ζ2| ≤ |z|2 = p2 < 1 along the straight path of integration
from ζ = 0 to ζ = z), and we also considered the definition of the complex logarithm.

Now, using the result above, we deduce the sum of this other infinite series:

S ≡
∑

n=1,3,5···

4

n

(A
B

)nπ2γ
sin

nπθ′

2γ
sin

nπθ

2γ
=

∑
n=1,3,5···

2

n
pn

[
cos nπ(θ′−θ)

2γ − cos nπ(θ′+θ)
2γ

]∣∣∣∣
p=(A

B )π/2γ

=

1

2
ln

1 + p2 + 2p cos π(θ′−θ)
2γ

1 + p2 − 2p cos π(θ′−θ)
2γ

− 1

2
ln

1 + p2 + 2p cos π(θ′+θ)
2γ

1 + p2 − 2p cos π(θ′+θ)
2γ


p=(A

B )π/2γ

=
1

2
ln
A

π
γ +B

π
γ + 2(AB)

π
2γ cos π(θ′−θ)

2γ

A
π
γ +B

π
γ − 2(AB)

π
2γ cos π(θ′−θ)

2γ

− 1

2
ln
A

π
γ +B

π
γ + 2(AB)

π
2γ cos π(θ′+θ)

2γ

A
π
γ +B

π
γ − 2(AB)

π
2γ cos π(θ′+θ)

2γ

.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 10, n. 1, 2023.

DOI: 10.5540/03.2023.010.01.0029 010029-5 © 2023 SBMAC

http://dx.doi.org/10.5540/03.2023.010.01.0029


6

Finally, since G(r, θ | r′, θ′) = S
∣∣∣∣A = r<
B = r>

− S
∣∣∣∣A = rr′/b

B = b

, as wee see from (14), we have that

G(r, θ | r′, θ′) =
1

2
ln
r
π
γ + r′

π
γ + 2(rr′)

π
2γ cos π(θ′−θ)

2γ

r
π
γ + r′

π
γ − 2(rr′)

π
2γ cos π(θ′−θ)

2γ

− 1

2
ln
r
π
γ + r′

π
γ + 2(rr′)

π
2γ cos π(θ′+θ)

2γ

r
π
γ + r′

π
γ − 2(rr′)

π
2γ cos π(θ′+θ)

2γ

− 1

2
ln
(rr′/b)

π
γ + b

π
γ + 2(rr′)

π
2γ cos π(θ′−θ)

2γ

(rr′/b)
π
γ + b

π
γ − 2(rr′)

π
2γ cos π(θ′−θ)

2γ

+
1

2
ln
(rr′/b)

π
γ + b

π
γ + 2(rr′)

π
2γ cos π(θ′+θ)

2γ

(rr′/b)
π
γ + b

π
γ − 2(rr′)

π
2γ cos π(θ′+θ)

2γ

. (15)

5 Comparison with the Solution Given by the Method of
Images when the Domain is the First Quadrant of the Disc

The method of images {cf. Refs. [7, sec. VII.13] and [2, sec. 3]} allows to obtain the solution faster
when the problem presents a symmetry that allows to quickly infer the configuration of images to
use. Let us then apply this method for the particular case in which γ = π/2 to check (15). In this
case, we need the seven images P−

1 , P+
2 , P−

3 , P−
4 , P+

5 , P−
6 , and P+

7 shown in Figure 2, in which the
superscript + or − indicates that the corresponding harmonic term has a +1 or −1 multiplying it.
These terms are of the form [7, sec. VII.13, last paragraph] ± ln(1/|r⃗ ′ − r⃗n|), if the corresponding
image is generated by reflection with respect to the x or y-axis, or ± ln

[
(b/r)/|r⃗ ′ − r⃗n|

]
, if by

inversion with respect to the circle of radius b centered at the origin, where r⃗n denotes the position
vetor of the n-th image. Green’s function is therefore given by

G(r⃗ | r⃗ ′) = ln
1

|r⃗ ′ − r⃗ |
− ln

1

|r⃗ ′ − r⃗1|
+ ln

1

|r⃗ ′ − r⃗2|
− ln

b/r

|r⃗ ′ − r⃗3|

− ln
1

|r⃗ ′ − r⃗4|
+ ln

b/r

|r⃗ ′ − r⃗5|
− ln

b/r

|r⃗ ′ − r⃗6|
+ ln

b/r

|r⃗ ′ − r⃗7|
. (16)

Figure 2: The configuration of images used to get, by the method of images, Green’s function for
problem (1) when γ = π/2 (the case in which the domain Ω is the first quadrant of the disc).

The plane polar coordinates of the position vectors above are as follows:

r⃗ (r , θ) , r⃗ ′(r′, θ′) , r⃗1(r , 2π−θ) , r⃗2(r , π−θ) , r⃗3(b
2/r , θ) ,

r⃗4(r , π+θ) , r⃗5(b
2/r , 2π−θ) , r⃗6(b

2/r , π−θ) , r⃗7(b
2/r , π+θ) .
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Therefore, by using the definition of magnitude of a vector, or, geometrically, the law of cosines,
we can calculate all the distances |r⃗ ′ − r⃗ |, |r⃗ ′ − r⃗1|, |r⃗ ′ − r⃗2| · · · in (16), obtaining

G(r, θ|r′, θ′) = −(1/2) ln
[
r2+ r′

2− 2rr′ cos(θ′−θ)
]
+ (1/2) ln

[
r2+ r′

2− 2rr′ cos(θ′+θ)
]

− (1/2) ln
[
r2+ r′

2
+ 2rr′ cos(θ′ + θ)

]
+ (1/2) ln

[
(rr′/b)2+ b2− 2rr′ cos(θ′−θ)

]
+ (1/2) ln

[
r2+ r′

2
+ 2rr′ cos(θ′−θ)

]
− (1/2) ln

[
(rr′/b)2+ b2− 2rr′ cos(θ′+θ)

]
+ (1/2) ln

[
(rr′/b)2+ b2+ 2rr′ cos(θ′+θ)

]
− (1/2) ln

[
(rr′/b)2+ b2+ 2rr′ cos(θ′−θ)

]
,

which is exactly the same Green’s function given by (15) with γ = π/2 .

6 Final Comments
To get (4) from the cited eq. (1.42) in Ref. [5], we need to multiply this equation by 4π/2π,

ignore the integral over the boundary, and replace −ρ/ϵ0 with h, because our problem (2) is two-
dimensional (and not tridimensional), has homogeneous boundary conditions, and exhibits simply
h (instead of −ρ/ϵ0) in the right-hand side of Poisson’s equation.

The method can be applied in any domain Ω where r ∈ (a, b) and θ ∈ (0, γ), with any a and b
such that b > a ≥ 0 and any γ ∈ (0, 2π]. Furthermore, many experimental calculations performed
privately indicate that, whenever the boundary conditions are Dirichlet’s or Neumann’s, it will be
possible to determine Green’s function in closed form, which is a nice feature of the method.

When there are enough symmetries, the method of images also gives results in closed form
and, moreover, more quickly, thus becoming the best method. But when this is not the case (for
γ ̸= π/2, π, 3π/2, 2π), this method becomes considerably involved, and the method presented here
is preferable.

The problem considered in this work finds application in fields such as Newtonian gravity,
electrostatics as well as fluid dynamics (cf. the pressure Poisson equation in Ref. [6], sec.2).

References
[1] W. E. Boyce and R. C. DiPrima. Elementary Differential Equations and Boundary

Value Problems. 10th ed. Hoboken, NJ: John Wiley & Sons, 2012. isbn: 978-0-470-45831-0.

[2] R. T. Couto. “A equação de Laplace num semidisco sob a condição de fronteira mista Dirichlet-
Neumann”. In: Proceeding Series of the Brazilian Society of Computational and
Applied Mathematics. 2021, pp. 010341-1–7. doi: 10.5540/03.2021.008.01.0341.

[3] L. C. Evans. Partial Differential Equations. 2nd ed. Providence, RI: American Mathemat-
ical Society, 2010. isbn: 978-0-8218-4974-3.

[4] F. B. Hildebrand. Advanced Calculus for Applications. 2nd ed. Englewood Cliffs, NJ:
Prentice-Hall, 1976. isbn: 0-13-011189-9.

[5] J. D Jackson. Classical Electrodynamics. 3rd ed. New York: John Wiley & Sons, 1999.
isbn: 0-471-30932-X.

[6] D. Shirokoff and R. R. Rosales. “An efficient method for the incompressible Navier-Stokes
equations on irregular domains with no-slip boundary conditions, high order up to the bound-
ary”. In: Journal of Computational Physics 23 (2011), pp. 8619–8646. doi: 10.1016/j.
jcp.2011.08.011.

[7] E. C. Zachmanoglou and W. T. Thoe. Introduction to Partial Differential Equations
with Applications. New York: Dover Publications, 1986. isbn: 0-486-65251-3.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 10, n. 1, 2023.

DOI: 10.5540/03.2023.010.01.0029 010029-7 © 2023 SBMAC

http://dx.doi.org/10.5540/03.2023.010.01.0029

