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Abstract. This work develops the Multiscale Hybrid-Hybrid Mixed method - MH2M. This is a
finite element method that efficiently solves elliptic partial differential equations with multiscale
heterogeneous coefficients. The starting point is the Three-field domain decomposition formulation,
which searches a function, defined within each subdomain, and two Lagrange multipliers: the flow
and trace of the function posed on interfaces. This setting allows different discretizations in each
subdomain, as well as the use of different numerical methods to solve local problems. After the
decomposition of functional spaces and two static condensations, the MH2M method arises by
solving independent local Neumann problems in parallel. It results that the method solves an
elliptic global problem posed at interfaces instead of the more complicated three-field formulation.
In addition to the lower computational cost, the use of iterative methods such as the conjugate
gradient is possible. A proper compatibility condition enables a discretization using non-matching
grids, preserving stability. Finally, we establish error estimates for a pair of compatible finite element
spaces.

Key words. Numerical methods, Finite element methods, Multiscale Hybrid-Hybrid-Mixed method,
Multiscale Hybrid-Mixed method.

1 Setting and preliminaries results

1.1 The model problem
Let Ω be an open bounded subset of Rd, d = 2, 3, with a polygonal boundary ∂Ω. The model

problem consists of finding u : Ω→ R, weak solution of

−∇ · (A∇u) = f, in Ω (1)
u = 0, on ∂Ω

where f ∈ L2(Ω). The coefficient matrix A ∈ [L∞(Ω)]
d×d is symmetric and there are constants

0 < amin < amax such that the following ellipticity condition holds

amin|v|2 ≤ A(x)v · v ≤ amax|v|2, (2)

for all v ∈ Rd and almost everywhere x ∈ Ω. The corresponding variational formulation of (1)
gives that u ∈ H1

0(Ω) satisfy∫
Ω

A∇u · ∇v dx =

∫
Ω

fv dx, ∀ v ∈ H1
0(Ω). (3)

The Poincaré inequality and the Lax-Milgram Lemma [4] ensure that (3) is well-posed.
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1.2 Definitions
We next consider a partition of the domain Ω and define some suitable functional spaces to

propose a different formulation for (3). Let TH := {K} be a regular and conforming triangulation
of Ω, with characteristic length H ∈]0, 1[. The intersection of two different elements Ki, Kj ∈ TH
is either empty, a node or a face. In particular each face F is such that F ⊂ ∂Ki ∩ ∂Kj for some
two elements, or F ∈ ∂Ω. We denote the skeleton of the mesh TH by EH, given by the set of all
faces F . Let n the exterior normal vector on ∂Ω and, for each K ∈ TH, let nK be the unitary
outward normal vector on ∂K.

Next, consider the following broken functional spaces:

H1(TH) :=
{
v ∈ L2(Ω); v|K ∈ H1(K), K ∈ TH

}
, Λ :=

∏
K∈TH

H−1/2(∂K), (4)

H1/2
0 (EH) :=

{
v|EH ; v ∈ H1

0(Ω)
}
. (5)

We denote by H1/2(∂K) the space of traces on ∂K of functions in H1(K), and by H−1/2(∂K) its
dual space. For w, v ∈ H1(TH), ρ ∈ H1/2

0 (EH) and µ ∈ Λ, let:

(v, w)TH :=
∑
K∈TH

∫
K

wv dx, 〈µ, ρ〉EH =
∑
K∈TH

〈µ, ρ〉∂K , (6)

where 〈·, ·〉∂K is the dual product involving H−1/2(∂K) and H1/2(∂K).

1.3 The Three-field domain decomposition method
At this point, we proceed to develop the three-field variational formulation of (3). It follows

from (1) that λ := A∇u ·n ∈ H−1/2(EH). Thus, λ is the trace of a function in H(div; Ω). From [4,
Lemma 3.4], that is equivalent to λ ∈ Λ and

〈λ, ξ〉EH = 0 (7)

for all ξ ∈ H1/2
0 (EH). On the other hand, consider ρ ∈ H1/2

0 (EH). The Hahn-Banach Theorem [2,
Theorem 5.9− 3] allows us to impose ρ as the trace of u over EH, that is,

〈µ, u− ρ〉EH = 0, (8)

for all µ ∈ Λ. Therefore, assuming that (3) holds, we gather (3), (7) and (8) and obtain the
Three-field formulation: find u ∈ H1(TH), ρ ∈ H1/2

0 (EH) and λ ∈ Λ such that

(A∇u,∇v)TH −〈λ, v〉EH = (f, v)TH , ∀ v ∈ H1(TH);
−〈µ, u〉EH +〈µ, ρ〉EH = 0, ∀ µ ∈ Λ;

〈λ, ξ〉EH = 0, ∀ ξ ∈ H1/2
0 (EH).

(9)

Remark 1.1. Note that it is possible to recover the infinite dimensional formulation of the Mul-
tiscale Hybrid-Mixed method (MHM) [5]. Let the jump operator J·K : Λ → L2(EH) such that, if
τ ∈ Λ, then JτK|F := τ |F · nKi + τ |F · nKj on a shared face F ∈ Ki ∩Kj. Consider the subspace

Λ∗ := {µ ∈ Λ; JµK|F = 0, ∀ F ∈ EH \ ∂Ω} ⊂ Λ.

By replacing Λ with Λ∗ in (9), the terms 〈λ, ξ〉EH and 〈µ, ρ〉EH vanish, for all µ ∈ Λ∗ and all
ξ ∈ H1/2

0 (EH). Thus, the problem becomes: find a pair (u, λ) ∈ H1(TH)× Λ∗ such that

(A∇u,∇v)TH −〈λ, v〉EH = (f, v)TH , ∀ v ∈ H1(TH);
−〈µ, u〉EH = 0, ∀ µ ∈ Λ∗.
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1.4 Infinite dimensional global problem
Now, we perform space decomposition and static condensations to make problem (9) simpler

to solve. Let us decompose both spaces H1(TH) and Λ in the form "constant" plus "zero average",
i.e.

H1(TH) = P0(TH)⊕ H̃
1
(TH), and Λ := Λ0 ⊕ Λ̃, (10)

where P0(TH) is the space of piecewise constants in each element and

H̃
1
(TH) :=

{
v ∈ H1(TH);

∫
∂K

v ds = 0, ∀K ∈ TH
}

; (11)

Λ0 := span
{
µ0 ∈ Λ; 〈µ0, v〉∂K :=

∫
∂K

v ds, v ∈ H1(TH), K ∈ TH
}

; (12)

Λ̃ := Λ ∩ P⊥0 (TH). (13)

Then we can write u = u0 + ũ, where u0 ∈ P0(TH) and ũ ∈ H̃
1
(TH), and also λ = λ0 + λ̃, for

λ0 ∈ Λ0 and λ̃ ∈ Λ̃. Decomposition (10) implies in a pre-processing stage to find λ0 ∈ Λ0 for which

〈λ0, v0〉EH = −(f, v0)TH , ∀ v0 ∈ P0(TH); (14)

Also, after computing ρ ∈ H1/2
0 (EH), there is a post-processing stage to get u0 ∈ P0(TH) such that

〈µ0, u0〉EH = 〈µ0, ρ〉EH , ∀ µ0 ∈ Λ0. (15)

It remains to solve the system with zero-mean functions: find (ũ, λ̃, ρ) ∈ H̃
1
(TH)×Λ̃×H1/2

0 (EH)
solution of

(A∇ũ,∇ṽ)TH −〈λ̃, ṽ〉EH = (f, ṽ)TH , ∀ ṽ ∈ H̃
1
(TH),

−〈µ̃, ũ〉EH +〈µ̃, ρ〉EH = 0 ∀ µ̃ ∈ Λ̃,

〈λ̃, ξ〉EH = −〈λ0, ξ〉EH , ∀ ξ ∈ H1/2
0 (EH).

(16)

The first equation consists in finding weak solutions of two local Neumann problems:

1. find Tµ̃ ∈ H̃
1
(TH) such that

∇ · (A∇Tµ̃) = 0, in K (17)

(A∇Tµ̃) · nK = λ̃, on ∂K

2. find w = T̃ f ∈ H̃
1
(TH) such that

∇ · (A∇w) = f, in K (18)

(A∇w) · nK =
1

|∂K|

∫
K

f dx, on ∂K

Note that the compatibility conditions for both (17) and (18) hold, and therefore the problems are
well-posed. We can then write ũ = T λ̃ + T̃ f . Applying a static condensation in (16), we obtain
the saddle-point problem of finding (λ̃, ρ) ∈ Λ̃×H1/2

0 (EH) such that

−〈µ̃,Tλ̃〉EH + 〈µ̃, ρ〉EH = 〈µ̃, T̃ f〉EH , ∀ µ̃ ∈ Λ̃;

〈λ̃, ξ〉EH = −〈λ0, ξ〉EH , ∀ ξ ∈ H1/2
0 (EH).

(19)
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We identify the first equation in (19) as the classical Dirichlet to Neumann map [1]

G :
∏

K∈TH

H1/2(∂K) −→ Λ̃, (20)

for which we associate each function ρ ∈ H1/2
0 (EH) to its correspondent Gρ ∈ Λ̃ defined as Gρ :=

∇(TGρ) · nK , where TGρ is the weak solution of the local Dirichlet problem

∇ · (∇TGρ) = 0, in K, (21)
TGρ = ρ, on ∂K,

for allK ∈ TH. Such variational problem is well-posed, since the bilinear form 〈·,T·〉EH is Λ̃-elliptic.
For µ̃ ∈ Λ̃, we have

〈µ̃,Tµ̃〉EH =
∑
K∈TH

〈µ̃,Tµ̃〉∂K =
∑
K∈TH

∫
K

A∇(Tµ̃) · ∇(Tµ̃) dx ≥
∑
K∈TH

amin‖∇Tµ̃‖20,K

≥
∑
K∈TH

C‖Tµ̃‖21,K ≥
∑
K∈TH

C|µ̃|2− 1
2 ,∂K

≥ C|µ̃|2− 1
2 ,EH

, (22)

where the last two inequalities follow from the Generalized Poincaré inequality and the injectivity
of the operator T. Then, we replace λ̃ = G(ρ− T̃f) into (19) and apply an static condensation to
get the global problem in terms of traces, that is, we seek for ρ ∈ H1/2

0 (EH) such that

〈Gρ, ξ〉EH = −〈λ0, ξ〉EH + 〈GT̃f, ξ〉EH , ∀ ξ ∈ H1/2
0 (EH). (23)

Well-posedness to (23) follows from the Theorem 1.1 below.

Theorem 1.1. The bilinear form 〈G·, ·〉EH : H1/2
0 (EH)×H1/2

0 (EH)→ R is symmetric, bounded and
coercive.

The characterization of the exact solution is given by

u = u0 + TGρ+ (I− TG)T̃f. (24)

2 Galerkin scheme
Let the finite dimensional subspaces ΓHΓ ⊂ H1/2

0 (EH) and Λ̃HΛ ⊂ Λ̃. For simplicity, we assume
that local problems have exact solutions, i.e., there are "no second level discretizations". Then,
the stability of the method on the interfaces is conditioned to the compatibility condition between
flows and traces: consider Γ̃HΓ

:= ΓHΓ
∩H̃1/2

(EH), where H̃
1/2

0 (EH) stands for space of "zero mean"
functionals on the elements border, and define Λ̃H0

⊂ Λ̃ such that

ξ̃HΓ
∈ Γ̃HΓ

and 〈µ̃HΛ
, ξ̃HΓ

〉∂K = 0, ∀ µ̃HΛ
∈ Λ̃H0,K , ∀K ∈ TH =⇒ ξ̃HΓ

= 0. (25)

We illustrate an example of space functions that satisfy (25) depicted in the Figure 1. We assume
that Λ̃HΛ

is a finite dimensional space such that Λ̃H0
⊂ Λ̃HΛ

⊂ Λ̃. Finally, we define the operator
Gh : H1/2

0 (EH)→ Λ̃HΛ
, the discrete counterpart to G defined in (20). The Galerkin scheme of (23)

consists to finding ρHΓ
∈ ΓHΓ

such that

〈GhρHΓ
, ξHΓ

〉EH = −〈λ0, ξHΓ
〉EH + 〈GhT̃f, ξHΓ

〉EH , ∀ ξHΓ
∈ ΓHΓ

. (26)

The following proposition is a stability result from the second compatibility condition (25).
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Trace ΓHΓ := P1(EH)

Flux ΛHΛ
:= P0(EH)

Figure 1: Compatible finite dimensional subspaces.

Proposition 2.1. For K ∈ TH, let Λ̃H0
⊂ Λ̃ introduced in (25). Then, there exists γK > 0

independent of H such that

sup
µ̃∈Λ̃

〈µ̃, ξHΓ
〉∂K

|µ̃|− 1
2 ,∂K

≤ γK sup
µ̃HΛ

∈Λ̃H0

〈µ̃HΛ
, ξHΓ

〉∂K
|µ̃HΛ |− 1

2 ,∂K

, (27)

for all ξHΓ ∈ ΓHΓ .

The following theorem ensures the well-posedness to (26).

Theorem 2.1. The bilinear form 〈Gh·, ·〉EH : ΓHΓ × ΓHΓ → R is symmetric and positive definite.

The approximated solution is

uh = u0 + TGhρHΓ
+ (I− TGh)T̃f ; (28)

Comparing to (24), we see that the only discretization involves Gh. That is because we assume
exact solutions for the second level problems T and T̃ .

3 Main result
We derive estimates for the approximations errors ρ − ρHΓ and λ − λHΛ . The next result is

based on the First Strang Lemma [3].

Theorem 3.1. Let (u, λ, ρ) ∈ H1(TH) × Λ × H1/2
0 (EH) be solution of the infinite dimensional

variational formulation (9) and (uh, λHΛ
, ρHΓ

) ∈ Vh × ΛHΛ
× ΓHΓ

its approximated solution from
Galerkin scheme (28). Then, problem (26) is well-posed and

|ρ− ρHΓ | 12 ,EH ≤ inf
φHΓ
∈ΓH

{
2|ρ− φHΓ | 12 ,EH + E(φHΓ

)
}

+ E(T̃f);

|λ− λHΛ
|Λ ≤ |ρ− ρHΓ

| 1
2 ,EH

+ E(ρHΓ
) + E(T̃f);

|u− uh|1,A,TH ≤ |λ− λHΛ
|Λ

where, for φ ∈ H1/2
0 (EH),

E(φ) := inf
µ̃HΛ

∈Λ̃HΛ

{(
C−1
T + 1

)
|Gφ− µ̃HΛ |Λ

}
;

Finally, the following weak continuity

〈µHΛ
, uh − ρHΓ

〉EH = 0, ∀ µHΛ
∈ ΛHΛ

,

holds.
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4 The MH2M method
We introduce the Multiscale Hybrid-Hybrid-Mixed method to get a numerical solution of (26).

The infinite dimensional spaces are approximated by using polynomial space functions subject to
the condition (25). Let the following pair of finite element spaces

Γ1
HΓ

:=
{
ξHΓ
∈ H1/2

0 (EH); ξHΓ
|F ∈ P1(F ), ∀ F ∈ EH

}
; (29)

Λ0
HΛ

:=
∏

K∈TH

{
µHΛ

∈ L2(∂K); µHΛ
|F ∈ P0(F ), ∀ F ∈ ∂K

}
.

They are illustrated in Figure 2. We obtain in the Theorem below the optimal convergence rates.

Figure 2: Representative functions of Λ0
HΛ

and Γ1
HΓ

.

Theorem 4.1. Under assumptions of Theorem 3.1, considering u ∈ H2(TH), let the finite element
spaces Γ1

HΓ
and Λ0

HΛ
introduced in (29). Then, there exists constants C > 0 independent of H such

that

|ρ− ρHΓ
| 1
2 ,EH

≤CH‖f‖0,Ω, |λ− λHΛ |Λ ≤ CH‖f‖0,Ω; (30)

|u− uh|1,A,TH ≤ CH‖f‖0,Ω.

5 Conclusion
The Multiscale Hybrid-Hybrid-Mixed method is derived from a hybrid-mixed three-field formu-

lation and characterized by a symmetric elliptical problem. We relax the flux defining it on each
element boundary, so that different flux meshes can be taken for each element. Although there
is no conformity to the numerical solution, the trace and flux are conform, that is, our method
preserves mass conservation for the flux. Continuous and discrete inf-sup conditions hold. We
introduce a pair of compatible finite element spaces and error estimates.
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