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On the family of polynomials generated by a four-term
recurrence relation
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Abstract. This paper investigates the distribution, simplicity, and monotonicity of the zeros of
even and odd polynomials generated by a four-term recurrence relation and linear coefficients.
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1 Introduction
Sequences of polynomials generated by recurrence relations have been explored since the 18th

century. A classical example is the three-term recurrence relation related to the real orthogonal
polynomial sequence [2, 4]. However, not much is known in the case of polynomials generated by
a four-term recurrence relation. We can cite the references [1, 5, 6] as an example of recent studies
involving these classes of polynomials.

In this paper, we consider the polynomial sequence satisfying

Qn(z) = zQn−1(z)− b0Qn−2(z)− c1zQn−3(z), (1)

with b0, c1 ∈ R− {0}, Q0(z) = 1 and Q−n(z) = 0, for all n ∈ N.
This case was studied in reference [1], where the author presented necessary and sufficient

conditions on the coefficients b0 and c1 such that all the zeros of the polynomial Qn(z) are real,
for all n. The main result of [1] is the following.

Theorem 1.1. The zeros of Qn(z) are real if and only if b0 > 0 and − c1
b0

:= α ≤ 1
9 , in which case

they lie on the interval I :=
√
b0(−λ, λ), where

λ :=
4(

3α+1+
√
9α2−10α+1

−5α+1+
√
9α2−10α+1

)3/2 (
−5α+ 1 +

√
9α2 − 10α+ 1

) .
Futhermore, if Z(Qn) is the set of zeros of Qn(z), then

∞⋃
n=0

Z(Qn(z)) is dense on I.

Observe that, if b0 > 0 and c1 > 0, from this result it follows that all the zeros of Qn(z),
represented by z1n, z2,n, . . . , zn,n, are real. This observation will be used in Theorem 2.1, which is
the main result of this paper.

In the following, we present some properties of polynomial Qn(z), that will be used to analyze
the distribution of the zeros according to the signal of b0 and c1. We may see a complete study of
this topic in [3].
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2 Properties of Qn(z)

We can find proof of these lemmas in [3].

Lemma 2.1. If n is even (odd), the polynomial Qn(z) is even (odd).

Lemma 2.2. If n is odd, z = 0 is zero of Qn(z). Furthermore, if sgn(b0) = sgn(c1), z = 0 is a
simple zero. For n even, Qn(0) ̸= 0.

Lemma 2.3. For any n, n > 1, if sgn(b0) = sgn(c1), then the three consecutive polynomials Qn,
Qn−1 and Qn−2 do not have common zeros.

As we mentioned before, if b0 > 0 and c1 > 0 in (1), from Theorem 1.1, it follows that all the
zeros of Qn(z) are real. In the following result we prove that under this condition, the zeros of
Qn(z) are distinct and satisfy the interlacing property.

From Lemma 2.1, it follows that the zeros of Qn(z) are symmetric with respect to the origin.
So, Qn(z) has ⌊n/2⌋ positive zeros, denoted by zk,n, k = 1, . . . , ⌊n/2⌋, and ⌊n/2⌋ negative zeros,
represented by zk,n, k = n/2 + 1, . . . , n (for n even) and k = ⌊n/2⌋+ 2, . . . , n (for n odd). If n is
odd, z⌊n/2⌋+1,n = 0.

Theorem 2.1. If b0 > 0 and c1 > 0 in (1), Qn(z) has n distinct and real zeros z1,n > z2,n >
. . . > zn,n such that

• if n is even,

z1,n > z1,n−1 > z1,n−2 > z2,n > z2,n−1 > z2,n−2 > . . . > zn/2,n

> zn/2,n−1 = 0 > zn/2+1,n > zn/2,n−2 > zn/2+1,n−1 > zn/2+2,n (2)
> . . . > zn−3,n−2 > zn−2,n−1 > zn−1,n > zn−2,n−2 > zn−1,n−1 > zn,n;

• if n is odd,

z1,n > z1,n−1 > z1,n−2 > z2,n > z2,n−1 > z2,n−2 > . . . > z⌊n/2⌋,n

> z⌊n/2⌋,n−1 > z⌊n/2⌋,n−2 = 0 = z⌊n/2⌋+1,n > z⌊n/2⌋+1,n−1 (3)
> z⌊n/2⌋+2,n > . . . > zn−3,n−2 > zn−2,n−1 > zn−1,n

> zn−2,n−2 > zn−1,n−1 > zn,n,

where z1,n−1, z2,n−1, . . . , zn−1,n−1 and z1,n−2, z2,n−2, . . . , zn−2,n−2 are the zeros of Qn−1(z) and
Qn−2(z), respectively.

Proof. Firstly, we will analyse the behaviour of the zeros of Q1, Q2, Q3 and Q4:

1. Q1(z) = z and then z1,1 = 0.

2. Q2(z) = z2 − b0, z1,2 =
√
b0 and z2,2 = −

√
b0. Consequently,

z1,2 > z1,1 > z2,2.

3. Q3(z) = zQ2(z) − (b0 + c1)z = z[(z − z1,2)(z − z2,2) − (b0 + c1)]. Observe that Q3(0) = 0,
Q3(z1,2) < 0 and Q3(z2,2) > 0. So, z1,3 ∈ (z1,2,∞) and z3,3 ∈ (−∞, z2,2). Then,

z1,3 > z1,2 > z1,1 = 0 = z2,3 > z2,2 > z3,3.
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4. Q4(z) = z[(z−z1,3)(z−z2,3)(z−z3,3)−c1Q1(z)]−b0(z−z1,2)(z−z2,2). Note that Q4(z3,3) < 0,
Q4(z2,3) > 0 and Q4(z1,3) < 0. So, z1,4 ∈ (z1,3,∞), z2,4 ∈ (z2,3, z1,3), z3,4 ∈ (z2,3, zz3,3) and
z4,4 ∈ (−∞, z3,3). Furthermore, Q4(z1,2) < 0 and Q4(z2,2) < 0. Consequently,

z1,4 > z1,3 > z1,2 > z2,4 > z2,3 = 0 > z3,4 > z2,2 > z3,3 > z4,4.

By induction hypothesis, we assume that for some n ≥ 3, the zeros of the polynomials Qn,
Qn−1 and Qn−2 satisfy the relations (2), for n even, and (3), for n odd.

We will prove that those inequalities work for the zeros of Qn+1, Qn and Qn−1. Firstly, note
that

Qn+1(z) = z

n∏
j=1

(z − zj,n)− b0

n−1∏
j=1

(z − zj,n−1)− c1z

n−2∏
j=1

(z − zj,n−2). (4)

If n+ 1 is even, from (4) it follows that

sgn(Qn+1(zk,n)) = (−1)k, k = 1, . . . , n,

sgn(Qn+1(zk,n−1)) =

{
(−1)k, k = 1, . . . , n−1

2 ,
(−1)k+1, k = n+1

2 , . . . , n− 1
.

Furthermore, lim
z→∞

Qn+1(z) > 0 and lim
z→−∞

Qn+1(z) > 0.

With this, we have the existence of n+ 1 real zeros of Qn+1(z) such that

z1,n+1 > z1,n > z1,n−1 > z2,n+1 > z2,n > z2,n−1 > . . . > z(n+1)/2,n+1

> z(n+1)/2,n = 0 > z(n+3)/2,n+1 > z(n+1)/2,n−1 > z(n+3)/2,n > z(n+5)/2,n+1

> . . . > zn−2,n−1 > zn−1,n > zn,n+1 > zn−1,n−1 > zn,n > zn+1,n+1,

from which we complete the proof for n+ 1 even.
If n+ 1 is odd, from (4) it follows that

sgn(Qn+1(zk,n)) = (−1)k, k = 1, . . . , n,

sgn(Qn+1(zk,n−1)) =

{
(−1)k, k = 1, . . . , ⌊(n+ 1)/2⌋ − 1,
(−1)k+1, k = ⌊(n+ 1)/2⌋+ 1, . . . , n− 1

,

Qn+1(z⌊(n+1)/2⌋,n−1) = 0.

Furthermore, lim
z→∞

Qn+1(z) > 0 and lim
z→−∞

Qn+1(z) < 0.

With this, we have the existence of n+ 1 real zeros of Qn+1(z) such that

z1,n+1 > z1,n > z1,n−1 > z2,n+1 > z2,n > z2,n−1 > . . .

> z⌊(n+1)/2⌋,n > z⌊(n+1)/2⌋+1,n > z⌊(n+1)/2⌋,n−1 = 0 = z⌊(n+1)/2⌋+1,n+1

> z⌊(n+1)/2⌋+2,n+1 > . . . > zn−2,n−1 > zn−1,n > zn,n+1

> zn−1,n−1 > zn,n > zn+1,n+1,

from which the proof for an odd n+ 1 follows.

If b0 > 0, c1 < 0 and −c1
b0

≤ 1

9
in (1), from Theorem 1.1 it follows that all the zeros of Qn(z)

are real. Experiments show that the interlacing property mentioned in Theorem 2.1 is valid. So,
we proposed the following conjecture:

Conjecture 2.1. If b0 > 0, c1 < 0 and −c1
b0

≤ 1

9
in (1), Qn(z) has n distinct and real zeros

z1,n > z2,n > . . . > zn,n such that the relations (2) and (3) are satisfied.
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3 Numerical example
To exemplify the properties presented in the previous section, we shall consider b0 = 0.01 and

c1 = 1. So, we have
Qn(z) = zQn−1(z)− 0, 01Qn−2(z)− zQn−3(z), (5)

with Q0(z) = 1 and Q−n(z) = 0, for all n ∈ N. From the equation (5), it follows that, for n = 5, 6
and 7,

Q5(z) = z5 − 76

25
z3 +

203

10000
z,

Q6(z) = z6 − 81

20
z4 +

5303

5000
z2 − 10−6,

Q7(z) = z7 − 253

50
z5 +

3121

1000
z3 − 19

62500
z.

The next figure display the zeros of Q5(z), Q6(z) and Q7(z), represented by green, blue and
red points, respectively. Counting the zeros of each polynomial in Figure 1 on the left, we can miss
three zeros from Q7(z), two zeros from Q6(z), and one zero from Q5(z). This bad impression is
clarified by enlarging the figure close enough to the origin, as in the figure on the right. The zeros
that we cannot see clearly, due to the scale of Figure 1 on the left, are

z3,7 ≈ 0, 0099, z4,7 = 0 e z5,7 ≈ −0, 0099, zeros of Q7(z),
z3,6 ≈ 0, 001 e z4,6 ≈ −0, 001, zeros of Q6(z),

z3,5 = 0, zero of Q5(z).
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Figure 1: Representation of zero interlacing property of Q5(z), Q6(z) and Q7(z).

Note that the origin is a simple zero of Q5(z) and Q7(z), as mentioned in Lemma 2.2. Also, it
is easy to see that they do not have common zeros. Furthermore, as predicted in Theorem 2.1, the
zeros satisfy the interlacing property.
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