Trabalho apresentado no XLII CNMAC, Universidade Federal de Mato Grosso do Sul - Bonito - MS, 2023

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Simulação Computacional da Condução Nervosa Utilizando o Modelo de FitzHugh-Nagumo

Munir Alexandre¹, C. E. Rubio-Mercedes²

Curso de Engenharia Física, Universidade Estadual de Mato Grosso do Sul, Dourados, MS

Resumo. Os humanos se diferenciam de outros animais por possuírem cérebros mais desenvolvidos. A transmissão da mensagem do cérebro para as demais partes do corpo é feita por impulsos elétricos que se propagam por todo o sistema nervoso e alguns músculos. Neste trabalho, buscamos simular e analisar os impulsos elétricos que se propagam pelo sistema nervoso via modelo de FitzHughNagumo, que é resolvido utilizando o Método de Runge-Kutta. Foram feitas simulações computacionais utilizando o Software **SCILAB**, considerando-se diversas condições iniciais, bem como corrente contínua ou alternada através de interferência externa. Foi possível observar propriedades importantes como potencial e limiar de ação, potencial de repouso, sinal externo e as propriedades caóticas do sistema que representa a propagação de impulsos elétricos em uma membrana do neurônio em resposta a uma voltagem aplicada.

Palavras-chave. Simulação Computacional, Condução Nervosa, Modelo de FitzHugh-Nagumo, Método Runge-Kutta

1 Introdução

O que mais diferencia os seres humanos de outros animais é nossa capacidade intelectual, isso se deve a nossos cérebros serem mais desenvolvidos que os dos outros animais. Nosso cérebro envia mensagens para o corpo através de impulsos elétricos, os quais são transmitidos por todo o sistema nervoso. O sistema nervoso tem a função de receber os sinais procedentes dos meios exterior e interior da célula nervosa; os quais são utilizados, por sua vez, para coordenar o funcionamento geral do corpo. Este sistema é composto por células denominadas neurônios, delimitadas por uma membrana lipoprotéica, cuja espessura é de algumas dezenas de angstroms e que separa o meio intracelular do meio extracelular. Esta membrana exerce um papel fundamental na transmissão das informações neurais [1].

Desde o século XVI, a neurociência vem ganhando destaque cada vez maior na comunidade científica, em particular no século XX com as inúmeras contribuições de trabalhos publicados [1, 4]. As pesquisas realizadas no ramo da neurociência exploram mais de uma área do conhecimento, por esse motivo a neurociência é considerada multidisciplinar e reúne diversas especialidades como bioquímica, biomedicina, estatística, biofísica, matemática, engenharia entre outras [11]. Foi durante o século XX que se desenvolveu o modelo de FitzHugh-Nagumo (FHN), pelas contribuições de FitzHugh [2, 3] e Nagumo et al. [9], que criaram o modelo que funciona com duas variáveis, a variável rápida v relacionada à voltagem ou potencial de ação e a variável lenta ou de recuperação, w, relacionada à resposta do neurônio ao estímulo elétrico aplicado, mas sem significado biofísico específico. Neste trabalho, simularemos, usando o modelo FHN, a propagação dos pulsos elétricos no sistema nervoso, desde a geração, a transmissão e acoplamento ao serem propagados pelos neurônios.

¹muniralexandre@gmail.com

 $^{^{2}}$ cosme@uems.br

$\mathbf{2}$

Primeiramente investigaremos o comportamento dinâmico do modelo de neurônio único de FHN sob estimulação elétrica externa constante. Os modelos modificados de neurônios duplos de FitzHugh-Nagumo sob estimulação elétrica externa sinusoidal serão estudados como segundo exemplo.

O trabalho será dividido em quatro secções. Na seção 2, daremos alguns conceitos sobre neurônios e as sinapses. Na secção 3 apresentaremos o modelo FHN. Na secção 4, apresentaremos as simulações, analisaremos os pontos de equilíbrio no espaço de fases e enfatizando a estabilidade e o método de linearização. Por fim, na secção 5, apresentamos as conclusões associadas ao trabalho.

2 Neurônios

O neurônio ou a célula nervosa é a unidade funcional do sistema nervoso. Uma unidade funcional é a menor estrutura que pode realizar as funções de um sistema. Os neurônios possuem uma estrutura celular única, com longos processos que se estendem para além do corpo celular, ver [10] (Pags. 310-327). Os neurônios são responsáveis pela transmissão de mensagens pelo corpo e realizam essa tarefa através da propagação de impulsos elétricos. Tais mensagens são transmitidas de um neurônio para outro através do processo denominado de sinapse [10]. Os neurônios têm basicamente três regiões morfologicamente definidas: O corpo celular, os dentritos e o axônio. O corpo celular contém o núcleo, que armazena os genes da célula e o retículo endoplásmatico que sintetiza as proteínas da célula. Do corpo celular ramificam-se dois tipos de estrutura, os dentritos e o axônio; os dentritos servem como aparato principal para receber sinais de outras células. Por outro lado, o axônio, que é uma estrutura tubular que surge de uma região especializada da célula chamada de cone de implementação. O axônio é a principal estrutura condutora do neurônio. Os axônios podem dividir-se em diversas partes, mas a função principal é transmitir as mensagens a diferentes partes do corpo [12], veja Fig.1.

Figura 1: Ilustração da anatomia dos neurônios. As setas em cor cinza indicam a direção da propagação do impulso nervoso pela célula neural [8].

3 O Modelo de FHN

Em 1961, FitzHugh [2, 3] demonstrou que o modelo, composto por quatro equações, proposto por Hodgkin-Huxley [5] pertence a uma classe mais geral de sistemas excitaveis, tais como o sistema neuronal e o tecido cardiaco. Como um protótipo fundamental, o oscilador van der Pol foi um exemplo desta classe de sistemas, portanto FitzHugh o usou após adequadas modificações. Uma abordagem semelhante foi desenvolvida independentemente por Nagumo em 1962 [9], pelo qual o modelo passou a ser chamado de FitzHugh-Nagumo (FHN). O modelo de Hodgkin-Huxley possui uma precisão única, porém é de tratamento difícil, especialmente para visualização de fenômenos físico-químicos. O modelo de FHN é dado pelo sistema de equações da seguinte forma.

$$\begin{cases} \frac{dv}{dt} = v - \frac{v^3}{3} - w + I_{ext}, \\ \frac{dw}{dt} = \varepsilon(v + a - bw), \end{cases} \qquad (1)$$

onde v representa a excitabilidade do sistema e pode ser identificada com voltagem (potencial de membrana no axônio), w é uma variável de recuperação que representa as forças combinadas que tendem a retornar o estado de repouso da membrana, e I_{ext} é o valor do estímulo externo aplicado que leva à excitação (corrente de entrada) do neurônio [7]. Os parâmetros $a, b e \varepsilon$ são constantes que vão definir a obtenção ou não de estabilidade do sistema, havendo apenas um ponto de equilíbrio para (1), para os valoers consideremos neste trabalho a = 0, 7, b = 0, 8 e $\varepsilon = 0, 08$. Essa escolha dos valores dos parâmetros seguem a bibliografia [2],[7],[9],[13] e foram escolhidos de forma a gerarem soluções estáveis para a implementação e serem condizentes com a fisiologia neural [4],[10].

4 Simulações Numéricas

Primeiramente, consideremos o sistema FHN dado por (1) onde os pontos de equilíbrio são dados igualando a zeros em ambas as equações:

ı

$$v = v - \frac{v^3}{3} + I_{ext},$$
 (2)

е

$$w = (v+a)/b. \tag{3}$$

Os pontos (w, v) que satisfazem (2), correspondem aos estados nos quais apenas a voltagem através da membrana celular, v, não varia com o tempo, ou seja, se uma condição inicial for escolhida com tais características, o sistema neuronal permanecerá com a mesma voltagem através da membrana indefinidamente, uma vez que $v_t = 0$. A mesma justificativa é válida para a variável de recuperação, w, ao serem considerados os pontos (v, w) relacionados pela equação (3).

Para resolver o sitema FHN, (1), usamos o método de Runge-Kutta de quarta ordem [6]. Este método utiliza uma média dos valores de uma função f(t) no intervalo $[t_j, t_{j+1}]$. A ordem de um método de integração indica sua precisão com respeito µa potência do passo de propagação no tempo $h = t_{j+1} - t_j$.

Na Fig. 2 , graficamos as equações (2) e (3) as quais são chamadas de isóclinas onde o ponto de intersecção das curvas é o ponto de equilíbrio do modelo, esse ponto é o repouso do neurônio. O valor considerado para a corrente externa para éste gráfico foi de $I_{ext} = 0$. O potencial de repouso das membranas das fibras nervosas, quando não estão transmitindo sinais nervosos, é de cerca de -90 milivolts. Isto é, o potencial dentro da fibra é 90 milivolts negativos do que o potencial no líquido extracelular, do lado de fora da fibra [4].

3

4

Figura 2: Isóclinas das euqções (2) e (3). O ponto de intersecção das curvas é chamado de ponto de equilíbrio ou repouso do sistema.

4.1 Propagação em um único neurônio

Nas primeiras simulações consideramos o valor da voltagem inicial constante e mantemos os valores de w(0) = 0 e $I_{ext} = 0$, depois, consideramos um valor constante para I_{ext} , e por último como uma variação senoidal dependente do tempo para I_{ext} .

Na Fig. 3(a) mostramos os valores do potencial de ação v(t), onde $I_{ext} = 0$, v(0) = 0, 8 (linha verde), v(0) = 0, 6(linha vermelha), V(0) = 1, 0 (linha amarela) e V(0) = 1.0 (linha azul). Na Fig. 3(b) mostramos o potencial de ação v(t), para v(0) = 2, w(0) = 2, $I_{ext} = 0, 32$ (linha verde), $I_{ext} = 0, 35$ (linha azul), $I_{ext} = 1, 45$ (linha vermelha).

Nas membranas nervosas, o limiar para obter excitação é de cerca 0, 647 e caso esse limiar seja atingido é possível observar o comportamento do pulso no tempo, veja nos casos do potencial abaixo do limiar com v(0) = 0, 6 (linha verde) e acima do limiar com v(0) = 1, 0 (linha azul), 3(b). Esse fenômeno é o efeito **bomba de sódio de potássio**, que são canais eletricamente dependentes. Quando a voltagem de limiar é atingida, os canais se abrem permitindo a passagem de potássio para o interior da célula aumentando muito o potencial da célula. Após essa entrada repentina de íons positivos na célula, os canais eletricamente dependentes se fecham e outros canais se abrem, só que dessa vez permitindo a passagem de potássio para o exterior, o que causa uma queda abrupta do potencial, até que esses canais se fechem também novamente, o que leva o neurônio ao seu ponto de equilíbrio [4, 10].

Figura 3: (a) v em função do tempo, com $I_{ext} = 0$, v(0) = 0, 3 (linha verde), v(0) = 0, 6 (linha vermelha), v(0) = 0, 5 (linha amarela) e v(0) = 1, 0 (linha azul). (b) v(t), com v(0) = 2 e w(0) = 2, $I_{ext} = 0, 32$ (linha verde), $I_{ext} = 0, 35$ (linha azul), $I_{ext} = 1, 45$ (linha vermelha).

Nos resultados mostrados na Fig. 3 (b), observamos três simulações, todas com o potencial inicial v(0) = 2 e w(0) = 2, e diferentes valores para I_{ext} , os quais foram 0,32 (linha verde), 0,35 (linha azul) e 1,45 (linha vermelha). No primeiro caso, quando $I_{ext} = 0,32$, o fluxo de elétrons é muito baixo no sistema pois não atinge o valor do limiar do potencial e causa apenas pequenas oscilações no curva. No segundo caso, quando $I_{ext} = 0,35$, a voltagem do neurônio tem uma variação no formato de pulso viajante, e no último caso, $I_{ext} = 1,45$, a voltagem se estabiliza num valor acima do ponto de equilíbrio da célula.

Figura 4: Retrato de fase do modelo FHN sob estimulação elétrica externa constante, onde (a) $I_{ext} = 0, 32$, (b) $I_{ext} = 0, 35$ e (c) $I_{ext} = 1, 45$, com o tempo variando no intervalo [0, 200]

Na Fig. 4 observamos o tipo de bifurcação para I_{ext} indo da espiral estável para o ciclo limite periódico, depois do ciclo limite para a espiral instável e finalmente da espiral instável para o nó estável. As Figs. 4(a) e 4(c) são chamados de espiral entrante também pelo formato de v em função de w, cada vez mais a resposta e a voltagem se aproximam de um valor, como um valor de equilíbrio.

4.2 Acoplamento de dois neurônios

O sistema que representa os dois neurônios acoplados bidirecionalmente é definido por [7]

5

 $\mathbf{6}$

$$\begin{cases} \frac{dv_1}{dt} = v_1 - \frac{v_1^2}{3} - w_1 + I_{ext} - (v_1 - V_s)g_s \frac{1}{1 + exp(-\lambda(v_2 - \Theta_s))} \\ \frac{dw_1}{dt} = \varepsilon(v_1 + a - bw_1) \\ \frac{dv_2}{dt} = v_2 - \frac{v_2^3}{3} - w_2 + I_{ext} - (v_2 - V_s)g_s \frac{1}{1 + exp(-\lambda(v_1 - \Theta_s))} \\ \frac{w_2}{dt} = \varepsilon(v_2 + a - bw_2) \end{cases}$$
(4)

onde V_s é o potencial de reversão, g_s corresponde à força do acoplamento sináptico, Θ_s é o limiar alcançado por cada potencial de ação para um neurônio e os parâmetros são fixados como $V_s = 1$, $\Theta_s = -0, 25$ e $\lambda = 1$.

Nestas simulações tratam-se de observar quando dois neurônios se influenciam através das sinapses pela proximidade dos mesmos, isso é possível de se observar modificando o valor de g_s , uma vez que é possível realizar uma relação entre a força que os corpos exercem entre si e sua proximidade. Na Fig. 5 é apresentado o comportamento temporal do potencial de ação para a simulação de dois neurônios acoplados. Pode-se observar a sobreposicao das curvas do potencial ação quando esses neurônios se aproximam entre si, o qual é obtido aumento do valor de g_s [7], veja 5(b).

Figura 5: O potencial de ação em função do tempo para o acoplamento de dois neurônios, com $v_1(0) = 2$ e $w_1(0) = 2$ (linha amarela) e $v_2(0) = 0, 0$ e $w_2(0) = 0, 0$ (linha verde), corrente I_{ext} senoidal com frequência A = 0,75, e (a) $g_s = 0,2$ e (b) $g_s = 0,3$.

5 Considerações Finais

Neste trabalho, usando o modelo de FHN, simulamos a propagação de pulso elétricos num neurônio. Apresentamos o comportamento dinâmico do sistema FHN sob estimulação elétrica externa, I_{ext} , e verificamos que a introdução de estimulação periódica modifica a dinâmica do sistema biológico ao apresentar o comportamento dinâmico.

Na data do evento apresentaremos resultados de acoplamento múltiplo de nurônios e simulações mostrando as propriedades caóticas do sistema. Será exibido o fenômeno de sincronização em uma rede de neurônios e a transmissão de informações através das sinapses entre neurônios.

Agradecimentos

Este trabalho foi financiado pela Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT), [Número de processo 219/2016].

Referências

- T. A. Assis, J. G. V. Miranda e S. L. P Cavalcante. "A dinâmica de condução nervosa via modelo de FitzHugh-Nagumo". Em: Revista Brasileira de Ensino da Física 1 (2010), pp. 1307–1307.10. DOI: 10.1590/S1806-11172010000100007.
- R. FitzHugh. "Impulses and Physiological States in Theoretical Models of Nerve Membrane".
 Em: Biophysical Journal 1(6) (1961), pp. 445–466. DOI: 10.1016/s0006-3495(61)86902-6.
- [3] R. FitzHugh. "Mathematical models of threshold phenomena in the nerve membrane". Em: Bulletin of Mathematical Biophysics 17 (1955), pp. 257–278.
- [4] A. C. Guyton e J. E. Hall. Tratado de Fisiologia Médica. 12a. ed. Mississipp: Elsevier, 2011. ISBN: 978-85-352-4980-4.
- [5] A.L. Hodgkin e A.F. Huxley. "A quantitative description of membrane current and its application to conduction and excitation in nerve". Em: Bulletin of Mathematical Biology 52 (1990), pp. 25–71. DOI: 10.1007/BF02459568.
- [6] J. D. Lambert. Computational Methods in Ordinary Differential Equations. 2a. ed. New York: Wiley, 1974. ISBN: 978-0471511946.
- [7] M. Mamat et al. "Numerical Simulation Bidirectional Chaotic Synchronization FitzHugh-Nagumo Neuronal System". Em: Applied Mathematical Sciences 38 (2012), pp. 1863– 1876.
- [8] Me. Site oficial do Mudo Educação. Online. Acessado em 29/03/2023, https://mundoeducacao. uol.com.br/biologia/neuronios.htm.
- J. Nagumo, S. Arimoto e S Yoshizawa. "An Active Pulse Transmission Line Simulating Nerve Axon". Em: Proceedings of the IRE. 1962, pp. 2061–2070. DOI: 10.1109/JRPROC.1962. 288235.
- [10] D. U. Silverthorn. Fisiologia Humana: Uma Abordagem Integrada. 7a. ed. Austin: Artmed, 2017. ISBN: 9780321981226.
- [11] M. T. Souza. "Modelagem de população de neurônios via equações diferenciais parciais". Dissertação de mestrado. Laboratório Nacional de Computação Científica (LNCC), 2017.
- [12] A. Spadotto. "Simulação de ondas reentrantes e fibrilação em tecido cardíaco, utilizando um novo modelo matemático". Dissertação de mestrado. Escola de engenharia de São Carlos, 2005.
- B. Xu et al. "Parameters analysis of FitzHugh-Nagumo model for a reliable simulation". Em: Annu Int Conf IEEE Eng Med Biol Soc. 2014, pp. 4334–7. DOI: 10.1109/EMBC.2014.
 6944583.

7