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Chaotic Behavior in Diffusively Coupled Systems
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Abstract. We study emergent oscillatory behavior in networks of diffusively coupled nonlinear or-
dinary differential equations. Starting from a situation where each isolated node possesses a globally
attracting equilibrium point, we give, for an arbitrary network configuration, general conditions for
the existence of the diffusive coupling of a homogeneous strength which makes the network dynamics
chaotic. The method is based on the theory of local bifurcations we develop for diffusively coupled
networks. We, in particular, introduce the class of the so-called versatile network configurations and
prove that the Taylor coefficients of the reduction to the center manifold for any versatile network
can take any given value.
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1 Introduction
Coupled dynamical systems play a prominent role in biology [6], chemistry [9], physics and

other fields of science [18]. Understanding the emergent dynamics of such systems is a challenging
problem, depending starkly on the underlying interaction structure [7, 10, 11, 13, 16].

In the early fifties, Turing thought of the emergent oscillatory behavior due to diffusive inter-
action as a model for morphogenesis [20]. We note that weak coupling of globally stable individual
systems cannot alter the stability of the homogeneous regime, this is the globally attracting state.
At the same time, no matter what the individual dynamics are, the strong diffusive coupling by
itself stabilizes the homogeneous regime. Therefore, the idea that the intermediate strength dif-
fusive coupling can create a non-trivial collective behavior is quite paradoxical. However, in the
mid-seventies, Smale [17] proposed an example of diffusion-driven oscillations. He considered two
4th-order diffusively coupled differential equations, which by themselves have globally asymptoti-
cally stable equilibrium points. Once the diffusive interaction is strong enough, the coupled system
exhibits oscillatory behavior. Smale posed a problem of finding conditions under which diffusively
coupled systems would oscillate.

Tomberg and Yakubovich [19] proposed a solution to this problem for the diffusive interaction
of two systems with scalar nonlinearity. For networks, Pogromsky, Glad, and Nijmeijer [15] showed
that diffusion-driven oscillations can result from an Andronov-Hopf bifurcation. Moreover, they
presented conditions to ensure the emergence of oscillations for general graphs. While this provides
a good picture of the instability leading to periodic oscillations, there is evidence that the diffusive
coupling may also lead to chaotic oscillations. Indeed, Kocarev and Janic [8] provided numerical
evidence that two isolated Chua circuits having globally stable fixed points may exhibit chaotic
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behavior when diffusively coupled. Along the same lines, Perlikowski and co-authors [14] investi-
gated numerically the dynamics of rings of unidirectionally coupled Duffing oscillators. Starting
from the situation where each oscillator has an exponentially stable equilibrium point, once the
oscillators are coupled akin to diffusion the authors found a great variety of phenomena such as
rotating waves, the birth of periodic dynamics, as well as chaotic dynamics.

Drubi, Ibanez, and Rodriguez [3] studied two diffusively coupled Brusselators. Starting from
a situation where the isolated systems have a globally stable fixed point, they proved that the
unfolding of the diffusively coupled system can display a homoclinic loop with an invariant set of
positive entropy.

We provide general conditions for diffusively coupled identical systems to exhibit chaotic oscil-
lations. We describe necessary and sufficient conditions (the so-called skewness condition) on the
linearization matrix at an exponentially stable equilibrium point of the isolated system such that
for any network of such systems there exists a diffusive coupling matrix such that the network has
a nilpotent singularity and thus a nontrivial center manifold. When the network structure satisfies
an extra condition, which we call versatility, we show that Taylor coefficients of the vector field on
the center manifold are in general position. This allows us to employ the theory of bifurcations of
nilpotent singularities due to Arneodo, Coullet, Spiegel and Tresser [2] and Ibanez and Rodríguez
[5] and to show that when the isolated system is at least four-dimensional, invariant sets of positive
entropy (i.e., chaos) emerge in such networks.

2 The model

We consider ordinary differential equations ẋ = f(x) with f ∈ C∞(U,Rn), n ∈ N for some
open set U ⊂ Rn. We assume that f has an exponentially stable fixed point in U ; with no loss
of generality, we put the origin of coordinates to this point. We study a network of such systems
coupled together according to a given graph structure by means of a diffusive interaction. Namely,
we consider the following equation:

ẋi = f(xi) + α

N∑
j=1

wijD(xj − xi), i = 1, . . . , N, (1)

where α > 0 is the coupling strength, W = (wij) is the adjacency matrix of the graph, thus,
wij = 1 if nodes i and j are connected and zero otherwise. Moreover, D is a positive-definite
matrix (that is, xTDx > 0 for all non-zero vectors x).

The homogeneous regime x = 0 persists for every value of the coupling strength α. It keeps
its stability at small α and is, typically, stable at sufficiently large α. However, at intermediate
values of the coupling strength, the stability of the homogeneous regime can be lost. Our goal is
to investigate the accompanying bifurcations. The difficulty is that the structure of system (1) is
quite rigid: all network nodes are the same (are described by the same function f) and the diffusion
coupling αD is the same for any pair of nodes. Therefore, the genericity arguments, standard for
the bifurcation theory, cannot be readily applied and must be re-examined.

2.1 Informal statement of main results

Our main goal is to give conditions for the emergence of non-periodic dynamics in the system
(1). Denote by A = Df(0) the linearization matrix n × n of the individual uncoupled system at
zero. Recall that matrix A is Hurwitz when all its eigenvalues have strictly negative real parts.
Our main result can be stated as follows.
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Suppose that, for some orthogonal basis, the Hurwitz matrix A has m positive en-
tries on the diagonal. Then, there exists a positive-definite matrix D such that the
linearization of system (1) at the homogeneous equilibrium at zero has a zero eigen-
value of multiplicity, at least m for a certain value of the coupling parameter α > 0.
If the network satisfies a condition we call versatility, for an appropriate choice of the
nonlinearity of f , the corresponding center manifold has dimension precisely m and the
Taylor coefficients of the restriction of the system on the center manifold can take on
any prescribed value.

The last statement means that the bifurcations of the homogeneous state of a versatile network
follow the same scenarios as general dynamical systems. Applying the results for triple instability
[3, 5] we obtain the following result.

For n ⩾ 4, for any generic 2-parameter family of nonlinearities f and any versatile
network graph, one can find the positive-definite matrix D such that the homogeneous
state of the coupled system (1) has a triple instability at a certain value of the coupling
strength α, leading to chaotic dynamics for a certain region of parameter values.

The condition on the Jacobian of the isolated dynamics can be understood in a geometric sense
as follows. We write ẋ = f(x) = Ax+O(|x|2). We claim that if a nonzero vector x0 ∈ Rn exists for
which ⟨x0, Ax0⟩ > 0, then there are points arbitrarily close to the origin, whose forward orbit has its
Euclidean distance to the origin increasing for some time, before coming closer to the (stable) origin
again. To see why, consider ∥x(t)∥2 = ⟨x(t), x(t)⟩, then it follows that d

dt∥x∥
2 = 2⟨Ax, x⟩+O(|x|3),

so ⟨Ax, x⟩ > 0 implies the growth of this derivative.
The property of versatility holds for graphs with heterogeneous degrees – the simplest example

is a star network. In a sense, versatility means that the network is not very symmetric. Given
a graph, one verifies whether the versatility property holds by evaluating the eigenvectors of the
graph’s Laplacian matrix, so it is an effectively verifiable property.

3 Main results

We start by introducing the basic concepts involved in the setup of the problem.

3.1 Graphs

A graph G is an ordered pair (V,E), where V is a non-empty set of vertices and E is a set of
edges connecting the vertices. We assume both to be finite and the graph to be undirected. The
order of the graph G is |V | = N , its number of vertices, and the size is |E|, its number of edges.
We will not consider graphs with self-loops. The degree of a vertex is the number of edges that
are connected to it.

ki =

N∑
j=1

wij , (2)

for, i = 1, . . . , N. We also define K = diag{k1, . . . , kN} to be the diagonal matrix of vertex degrees.
We only consider undirected graphs G, meaning that a vertex i is connected with a vertex j if

and only if it is vice versa. Thus, the adjacency matrix W is a symmetric matrix. In this context,
there is another important matrix related to the graph G, which is the well-known Laplacian
discrete matrix LG. It is defined by:

LG = K −W,
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so that each entry lij of LG can be written as

lij = δijki − wij , i, j = 1, . . . , N, (3)

where δij is Kronecker's delta. The matrix LG provides us with important information about
connectivity and synchronization of the network. It follows from Gershgorin disk theorem [4] that
LG is positive semi-definite and thus its eigenvalues can be ordered as

0 = λ1 ≤ λ2 ≤ · · · ≤ λN−1 ≤ λN ,

and let {v1, . . . , vN} be the corresponding eigenvectors. We assume the network is connected. This
implies that the eigenvalue λ1 = 0 is simple.

We are interested in a well-behaved class of graphs G whose structure induces a special property
of the associated Laplacian matrix. This property will be the existence of an eigenvector where
the sum of certain coordinate powers is non-vanishing, which corresponds to a simple eigenvalue
of LG. To this end, we define:

Definition 3.1 (ρ-versatile graphs). Let G = (V,E) be a graph and ρ ∈ N a positive integer. We
say that G is ρ-versatile for the eigenvalue-eigenvector pair (λ, v) with λ > 0, if the Laplacian
matrix LG has a simple eigenvalue λ with corresponding eigenvector v = (ν1, . . . , νN ), satisfying

N∑
i=1

νℓi ̸= 0, ∀ℓ = 2, . . . , ρ+ 1. (4)

Note that any eigenvector v = (ν1, . . . , νN ) for a non-zero eigenvalue necessarily satisfies∑N
i=1 νi = 0. This is because ν is orthogonal to the eigenvector (1, . . . , 1) for the eigenvalue

0.

3.2 Parametrization
We show that a system of diffusively coupled stable systems can display a wide variety of

dynamic behavior, including the onset of chaos. As the coupling strength α increases, a non-trivial
center manifold can emerge with no general restrictions on the Taylor coefficients of the reduced
dynamics.

Note that we may alternatively write Equation (1) in terms of the Laplacian:

ẋi = f(xi)− α

N∑
j=1

lijDxj , i = 1, . . . , N. (5)

Let X := col(x1, . . . , xN ) denote the vector formed by stacking xi’s in a single column vector. In
the same way, we define F (X) := col(f(x1), . . . , f(xN )). We obtain the compact form for equations
(1) and (5) given by

Ẋ = F (X)− α(LG ⊗D)X, (6)

where ⊗ stands for the Kronecker product. In order to analyze systems of the form (1), we allow
f depending on a parameter ε taking values in some open neighborhood of the origin Ω ⊆ Rd. For
simplicity, we assume the fixed point at the origin persists:

f(0; ε) = 0 ∀ ε ∈ Ω.

We assume the origin to be exponentially stable for ε = 0, from which stability follows for suffi-
ciently small ε as well. Note that the non-linear diagonal map F now depends on the parameter ε
as well.

We start with our working definition of center manifold reduction.
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Definition 3.2. Let

H : Rn × Ω → Rn (7)

be a family of vector fields on Rn, parameterized by a variable, ε in an open neighborhood of the
origin Ω ⊆ Rd. Assume that H(0; ε) = 0 for all ε ∈ Ω, and denote by Ec ⊆ Rn the center subspace
of the Jacobian DxH(0; 0) in the direction of Rn. A (local) parameterized center manifold of
the system (7) is a (local) center manifold of the unparameterized system H̃ on Rn × Ω, given by

H̃(x; ε) = (H(x; ε), 0) ∈ Rn × Rd , (8)

for x ∈ Rn and ε ∈ Ω. We say that the parameterized center manifold is of dimension dim(Ec),
and is parameterized by d variables. Under the assumptions on H, the center subspace of H̃ at the
origin is equal to Ec ×Rd. We can show that the dynamics on the center manifold of Equation (8)
is conjugate to that of a locally defined system

R̃(xc; ε) = (R(xc; ε), 0) , (9)

on Ec×Ω, where the conjugation respects the constant-ε fibers. The map R satisfies R(0; ε) = 0 for
all ε for which this local expression is defined, and we have Dxc

R(0; 0) = DxH(0; 0)|Ec : Ec → Ec.
We will refer to R : Ec × Ω → Ec as a parameterized reduced vector field of H.

In the definition above, the constant and linear terms of the parameterized reduced vector field
R are given. Motivated by this, we will write H [2,ρ] for any map H to denote the non-constant,
non-linear terms in the Taylor expansion around the origin of H, up to terms of order ρ. In other
words, we have

H(x) = H(0) +DH(0)x+H [2,ρ](x) +O(||x||ρ+1).

Given vector spaces W and W ′, we will use P l
2(W ;W ′) to denote the linear space of polynomial

maps from W to W ′ with terms of degree 2 through l. It follows that H [2,l] ∈ P l
2(W ;W ′) for

H : W → W ′.
We are interested in the situation where the domain of H involves some parameter space Ω,

in which case H [2,ρ] involves all non-constant, non-linear terms up to order ρ in both types of
variables (parameter and phase space). For instance, if H is a map from R× Ω to R with Ω ⊆ R,
then H [2,3](x; ε) involves the terms

a1x
2, a2xε, a3ε

2, a4x
3, a5x

2ε, a6xε
2 and a7ε

3,

with some constants ai. Note that a condition on H might put restraints on H [2,ρ] as well. For
instance, if H(0; ε) = 0 for all ε ∈ Ω, then H [2,3](x; ε) does not involve the terms ε2 and ε3.

3.3 Main theorems
We now formulate the main theorem, along with an important corollary.

Theorem 3.1 (Main Theorem). For any α ≥ 0, consider the ε-family of network dynamical
systems given by

Ẋ = F (X; ε)− α(LG ⊗D)X. (10)

Denote by A = Dxf(0; 0) the Jacobian of the isolated dynamics. If there exist m mutually or-
thogonal vectors x1, . . . , xm such that ⟨xi, Axi⟩ > 0, then there exists a positive-definite matrix D
together with a number α∗ > 0 such that the system of Equation (10) has a local parameterized
center manifold of dimension at least m for α = α∗.

Suppose that the graph G is ρ-versatile for the pair (λ, v). After an arbitrarily small perturbation
to A if needed, there exists a positive-definite matrix D and a number α∗ > 0 such that the following
holds:
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1. The system of Equation (10) has a local parameterized center manifold of dimension exactly
m for α = α∗.

2. Denote by R : Ec × Ω → Ec the corresponding parameterized reduced vector field, then
R(0; ε) = 0 for all ε ∈ Ω and DxR(0; 0) : Ec → Ec is nilpotent.

3. The higher order terms R[2,ρ] can take on any value in Pρ
2 (Ec×Ω; Ec) (subject to R[2,ρ](0; ε) =

0) as f [2,ρ] is varied (subject to f [2,ρ](0; ε) = 0).

The above result guarantees the existence of the center manifold and the reduced vector field.
When the dimension of the isolated dynamics is at least 4, the reduced vector field can exhibit
invariant sets of positive entropy, as the following result shows.

Corollary 3.1 (Chaos). Assume the conditions of Theorem (3.1) to hold for m = 3 and ρ = 2.
Then, in a generic 3-parameter system, we have the emergence of chaos through the formation of
a Shilnikov loop on the center manifold. In particular, chaos can form this way in a system of
4-dimensional nodes coupled diffusively in a network.

4 Final considerations
It is possible that a similar theory can be developed for the Andronov-Hopf bifurcation in

diffusively coupled networks (an analysis of diffusion-driven Andronov-Hopf bifurcations was un-
dertaken in [15] but the question of genericity of the restriction of the network system to the central
manifold was not addressed there).

We also point out that symmetry is often instrumental in explaining and predicting anomalous
behavior in network dynamical systems [1, 11, 12].

The network of just two symmetrically coupled systems has the corresponding graph Laplacian
that is not versatile, yet the emergence of chaos via the triple instability has been established in
[3] for the system of two diffusively coupled Brusselators. In general, we do not know when the
genericity of the Taylor coefficients of the center-manifold reduced vector field would hold if the
graph is not versatile or when graph symmetries would impose conditions on the dynamics that
forbid the existence of limiting sets of positive entropy.
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