Trabalho apresentado no XLII CNMAC, Universidade Federal de Mato Grosso do Sul - Bonito - MS, 2023

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Otimização Fuzzy no Planejamento da IMRT

Nicole Cristina Cassimiro de Oliveira,¹ Aurelio Ribeiro Leite de Oliveira² IMECC/Unicamp, Campinas, SP

Resumo. A radioterapia é uma modalidade de tratamento do câncer que consiste no uso de uma fonte de radiação ionizante que destrói o tumor. Em termos de tratamentos mais modernos, a radioterapia com intensidade modulada (IMRT) possibilita a variação de intensidade da fluência da radiação, alcançando uma distribuição de dose com conformidade superior, viabilizando ainda irradiação concomitante de diferentes alvos e doses. Diante disto, o problema de distribuição de doses no planejamento ótimo da IMRT traduz-se em otimizar a dosagem total de radiação aplicada ao paciente, sendo modelado utilizando técnicas de Programação Matemática. Para tal objetivo, utiliza-se a Otimização *Fuzzy*, devido às incertezas de dosagem, com a abordagem de funções surpresas, para aplicar o Método de Pontos Interiores Primal-Dual, a fim de determinar um plano de tratamento viável.

Palavras-chave. Método de Pontos Interiores, Radioterapia, Otimização Fuzzy.

1 Introdução

O câncer é um dos principais problemas de saúde pública mundial e já está entre as quatro principais causas de morte precoce no mundo. Atualmente, o tratamento de câncer pode ser feito por cirurgia, quimioterapia, transplante de medula óssea, braquiterapia ou radioterapia. A IMRT consiste na utilização de radiação ionizante que elimina as células tumorais. É estimado que entre 50 e 60% dos pacientes recém-diagnosticados têm indicação desse tratamento, em alguma etapa do processo [1]. A quantidade de radiação absorvida pelo tecido é chamada de dose e sua unidade é Gray (Gy), em que 1Gy = 1J/Kg. Como cada paciente é anatomicamente único, é preciso elaborar um plano de tratamento individualizado. Este plano compreende a informação de como a dose e a probabilidade de dano físico da irradiação é distribuída dentro do paciente, assim como a delimitação do volume-alvo (PTV - Planning Target Volume) e dos volumes dos órgãos adjacentes, através de uma tomografia computadorizada. Os tecidos adjacentes são chamados de saudáveis e entre eles estão os denominados órgãos de risco (OAR - Organs at Risk) que são mais suscetíveis a complicações com a exposição a radiação [6].

O objetivo principal do tratamento é depositar dose suficiente no tumor para cura, minimizando, ao mesmo tempo, a dose inevitável nos órgãos saudáveis. Entretanto, a prescrição pode ser imprecisa com base na experiência do médico, posicionamento do paciente, movimento interno de órgãos e de probabilidade de controle tumoral. Assim, se faz necessário utilizarmos uma metodologia que leve em consideração essas incertezas. Uma abordagem apresentada por Lodwick, Jamison e Bachman [7] faz uso da Otimização *Fuzzy*, em que os valores de dosagem são considerados como números *fuzzy*. Utiliza-se a teoria das funções surpresa, desenvolvida por Neumaier [8], com o intuito de traduzir matematicamente as restrições fuzzy em problemas de programação não linear.

Com base nisso, o problema de planejamento de radioterapia consiste em fornecer os padrões de intensidade que melhor produzem a distribuição de dose e restrições solicitadas [2] e será modelado utilizando técnicas de Programação Matemática, mais especificamente usando o Método de Pontos Interiores aplicado à uma função objetivo não-linear em que as restrições se mantém lineares, e a

¹n235160@dac.unicamp.br

²aurelio@po.ime.unicamp.br

abordagem de funções surpresa a fim de incorporar a Otimização Fuzzy na incerteza da dosagem. Neste contexto, o presente trabalho propõe uma comparação entre os planos de tratamento obtidos utilizando diferentes números fuzzy. A metodologia proposta foi aplicada em diferentes casos de câncer fazendo uso do banco de dados The Radiotherapy Optimisation Test Set (TROTS) [3]. Os resultados obtidos foram comparados por meio de Histogramas de Dose-Volume (DVH), análise de dosagem média para cada estrutura considerada e verificação de gráficos de contorno e superfície de dose, em que ambos os números fuzzy propostos produziram planos de tratamento viáveis.

2 Otimização Radioterápica

A otimização radioterápica consiste em construir uma função objetivo com base nos volumes e dosimetria, discretizando cada um dos campos de radiação em unidades bidimensionais de fluência, os denominados *beamlets*. Em geral, os *beamlets* são as variáveis de decisão do problema enquanto as funções de custo são avaliadas na dose no paciente, que é discretizada em *voxels*. Neste trabalho, a modelagem radioterápica tem como objetivo minimizar a dose total aplicada ao paciente, sujeito a limites superiores dentro do órgão alvo. A dose total é calculada pela somatória da dose individual em todos os *voxels* da tomografia.

Lodwick, Jamison e Bachman [7] propuseram uma formulação do problema de radioterapia sem incertezas como a seguir

$\operatorname{minimizar}$	$d^T x$	
sujeito a	$Bx \le b_{body},$	(dosagem corporal)
	$C_i x \leq c_i, \ \forall i = 1, \dots, N$	(dosagem nos tecidos críticos)
	$Tx \ge t_{min},$	(dosagem mínima do tumor)
	$Tx \le t_{max},$	(dosagem máxima do tumor)
	$0 \le x \le U.$	(limite de radiação)

As linhas da matriz B representam os voxels do corpo, C_i caracteriza os voxels dos órgãos de risco, para cada beamlet i, e T retrata os voxels do tumor. Os vetores b_{body} e c_i simbolizam os valores máximos permitidos para as doses dos tecidos saudáveis e dos órgãos críticos, respectivamente. Além disso, t_{min} descreve a dose mínima esperada para causar danos nas células tumorais enquanto t_{max} corresponde à dose máxima que evita consequências severas nos tecidos adjacentes. Por fim, as variáveis são vetores x que representam as intensidades dos beamlets com uma intensidade máxima U pré estabelecida, e a função objetivo $d^T x$ é dada pela dosagem total de radiação absorvida. A fim de simplificar a notação, tomamos

$$A = \begin{bmatrix} B \\ C_1 \\ \vdots \\ C_N \\ -T \\ T \end{bmatrix} e b = \begin{bmatrix} b_{body} \\ c_1 \\ \vdots \\ c_N \\ -t_{min} \\ t_{max} \end{bmatrix}$$

obtendo o equivalente problema de programação

$$\begin{array}{ll} \text{minimizar} & d^T x\\ \text{sujeito a} & Ax \leq b\\ & 0 < x < U, \end{array}$$

em que A é chamada de matriz de atenuação (attenuation matrix ou pencil-beam matrix), e seus elementos representam o valor da dose de radiação recebida pelo voxel i do beamlet j.

O vetor *b* representa as dosagens prescritas para cada região de interesse, que pode estar associado a incertezas. Diante disso, tomamos o vetor *b* como um número fuzzy \tilde{b} [9]. Conforme Zimmermann sugere, a melhor combinação de parâmetros pode ser encontrada pela minimização da função surpresa associada ao total de objetivos fuzzy, isto é, minimizando a surpresa total [8].

Considerando $A = [a_{ij}]_{i=1,...,m}^{j=1,...,n}$, as restrições de desigualdade são transformadas em igualdade, para cada i = 1, ..., m, como se segue

$$(Ax)_i \le \hat{b}_i \Longrightarrow (Ax)_i = \xi_i,\tag{1}$$

em que $\mu_i(\xi) = pos_i(\tilde{b}_i \ge \xi)$ é a função de pertinência de ξ_i definida usando a distribuição de possibilidades. Cada função de pertinência pode ser traduzida em uma função surpresa e todas as contribuições de todas as restrições são somadas para dar a surpresa total, dada por $\sum_i S_i(\xi) = \sum_i S_i((Ax)_i) = \sum_i S_i\left(\sum_j a_{ij}x_j\right)$. Logo, a formulação do Problema de Otimização *Fuzzy* usando Funções Surpresa fica

minimizar
$$\sum_{i=1}^{m} S_i \left(\sum_{j=1}^{n} a_{ij} x_j \right)$$

sujeito a $Ax = \xi$
 $0 \le x \le U,$ (2)

em que $S_i(\xi_i) = \left(\frac{1}{\mu_i(\xi_i)} - 1\right)^2$, com $\xi_i = \sum_{j=1}^n a_{ij} x_j$, é uma função convexa para cada $i = 1, \ldots, m$. O fato da função surpresa ser convexa garante que (2) é um problema de otimização com restrições limitadas muito bem comportado.

Para fins de comparação, vamos considerar \tilde{b} como ambos os números *fuzzy*. O número *fuzzy* triangular é dado por $\tilde{b} = (b_1 \ b_2 \ b_3)$, enquanto o trapezoidal é tal que $\tilde{b} = (b_1 \ b_2 \ b_3 \ b_4)$, cujas funções de pertinência para a *i*-ésima restrição do problema são dadas, respectivamente, por

$$\mu_{i}(\xi_{i}) = \begin{cases} \frac{\xi_{i} - b_{i_{1}}}{b_{i_{2}} - b_{i_{1}}}, & \text{se } \xi_{i} \in [b_{i_{1}}, b_{i_{2}}), \\ 1, & \text{se } \xi_{i} = b_{i_{2}}, \\ \frac{b_{i_{3}} - \xi_{i}}{b_{i_{3}} - b_{i_{2}}}, & \text{se } \xi_{i} \in (b_{i_{2}}, b_{i_{3}}], \\ 0, & \text{caso contrário} \end{cases} e \ \mu_{i}(\xi_{i}) = \begin{cases} \frac{\xi_{i} - b_{i_{1}}}{b_{i_{2}} - b_{i_{1}}}, & \text{se } \xi_{i} \in [b_{i_{1}}, b_{i_{2}}), \\ 1, & \text{se } \xi_{i} \in [b_{i_{2}}, b_{i_{3}}], \\ \frac{b_{i_{4}} - \xi_{i}}{b_{i_{4}} - b_{i_{3}}}, & \text{se } \xi_{i} \in (b_{i_{3}}, b_{i_{4}}], \\ 0, & \text{caso contrário.} \end{cases}$$

Conforme apresentado na Equação (1), temos que ξ_i é uma variável que deve satisfazer $Ax = \xi \leq \tilde{b}$, com \tilde{b} o número fuzzy considerado. Diante disto, como nos intervalos $(-\infty, b_1)$ e $(b_4, +\infty)$, no caso do número fuzzy trapezoidal, e nos intervalos $(-\infty, b_1)$ e $(b_3, +\infty)$, no caso do número fuzzy triangular, a função surpresa assume valores grandes, consideraremos que $b_1 \leq \xi \leq b_4$, para o número fuzzy trapezoidal e $b_1 \leq \xi \leq b_3$, para o número fuzzy triangular, a fim de que a função objetivo possa ser minimizada. Dessa maneira, podemos reformular nosso problema, usando o número fuzzy trapezoidal como referência, da seguinte forma

minimizar
$$f(x) = \sum_{i=1}^{TP} S_i \left(\sum_{j=1}^{N} a_{ij} x_j \right)$$

sujeito a $x \le U$,
 $Ax = \xi$,
 $\xi \ge b_1$,
 $\xi \le b_4$,
 $x \ge 0$,
(3)

em que o problema (3) consiste em minimizar a dose total aplicada no paciente. Isto é, atacando o tumor e evitando danos severos aos tecidos saudáveis.

3 Experimentos numéricos

Utilizaremos a base de dados *TROTS* [3] do protocolo *Head-and-Neck*, que corresponde a 15 pacientes com câncer na região da cabeça e pescoço para estudo e validação do modelo implementado. A implementação foi feita usando o *software* MATLAB versão 7.10.0.499 (R2010a) em um computador com as seguintes características: Ubuntu 20.04.5 LTS, CPU Intel(R) Core(TM) i7-4770K e 16GB de RAM.

Conforme apresentado na Comissão Internacional de Unidades e Medidas de Radiação (ICRU - International Commission on Radiation Units & Measurements) [5], a recomendação é que a dose absorvida no PTV seja confinada entre 95 e 107% da dose prescrita, considerando que o principal objetivo seja a homogeneidade da dose-alvo. Diferentemente do que se imagina, não podemos ilimitar a dose de radiação no perímetro tumoral, uma vez que é inevitável despejar radiação nos órgãos saudáveis adjacentes. Com base nisso, precisamos levar em consideração a subdosagem e superdosagem na implementação computacional, que no âmbito da abordagem fuzzy está relacionada aos extremos dos números fuzzy, que devem satisfazem esta limitação.

Para o protocolo *Head-and-Neck* da base de dados *TROTS* a dose de radiação prescrita para cada região é dada da seguinte maneira: 46 Gy para o perímetro tumoral (T), 38 Gy para os volumes da medula espinhal (C_1) e do tronco cerebral (C_2) e 46 Gy para a estrutura da laringe (C_3) [3, 4].

A fim de comparar a dose de radiação recebida nas estruturas do paciente pelo plano obtido, calculamos a dose absorvida para cada volume das regiões consideradas. Para isso, realizamos uma média da dosagem Ax em relação a cada vetor solução obtido. Para todos os pacientes, a média de irradiação para o tumor, usando ambos os números *fuzzy*, foi muito semelhante, em que o PTV recebeu dose suficiente conforme a recomendação da ICRU [5]. No que diz respeito à deposição de dose nas estruturas críticas consideradas, o número *fuzzy* trapezoidal teve uma média de radiação menor ou igual ao número *fuzzy* triangular, na maioria dos casos. Aqui apresentamos apenas os resultados numéricos para os pacientes 3 e 12, pois não há espaço suficiente e as imagens melhor ilustram as diferenças, mas as soluções e análises aqui destacadas foram análogas para todos os 15 pacientes do protocolo. A quinta coluna da Tabela 1 indica a diferença, em porcentagem, da dose média obtida com o número *fuzzy* trapezoidal em relação ao número *fuzzy* triangular.

Paciente	Estrutura	Triangular (Gy)	Trapezoidal (Gy)	Diferença (%)
3	T	46,2621	46,6067	+ 0,74
	C_1	17,0574	14,9101	$- 12,\!59$
	C_2	0,3896	0,2076	-46,71
	C_3	43,9579	43,7538	-0,46
12	T	46,4928	46,9447	+ 0,97
	C_1	17,2148	15,1551	- 11,96
	C_2	0,7988	0,3442	$-56,\!91$
	C_3	31,3170	34,0113	+ 8,60

Tabela 1: Comparação da dose de radiação para as estruturas consideradas aplicando números *fuzzy* triangulares e trapezoidais.

A seguir veremos as comparações das soluções obtidas usando o gráfico DVH (Figura 1). Ambos os números fuzzy depositaram cerca de dose de 44 Gy em torno de 98% do volume tumoral do Paciente 3, que corresponde a 95,65% da dose prescrita. No caso do Paciente 12, o número triangular depositou 44,5 Gy (96,74% da dose) e o trapezoidal 45,1 Gy (98,04% da dose) em 98% do tecido cancerígeno, atingindo o objetivo principal determinado pela ICRU [5]. Contudo, a solução trapezoidal proporcionou menos deposição de dose nos volumes das estruturas críticas, em comparação com a solução obtida pelo número *fuzzy* triangular. Por exemplo, para o Paciente 3, na medula espinhal C_1 , a solução trapezoidal depositou menos 12,59% radiação, para o tronco cerebral C_2 cerca de 46,71% menos e para a laringe C_3 em torno de 0,46% a menos de radiação. Para o Paciente 12, a solução triangular depositou em torno de 22 Gy em 60% do volume da medula espinhal, enquanto a trapezoidal depositou aproximadamente 14 Gy no mesmo percentual. Na estrutura C_2 , o tronco cerebral, a solução trapezoidal incidiu menos 56,91% de radiação que a solução triangular. Logo, a deposição de radiação foi semelhante nos órgãos críticos, ficando abaixo do prescrito pelo médico oncologista, mas nas estruturas a solução trapezoidal teve menor incidência na média. A fim de fazer uma comparação da distribuição de dose nos pacientes e tirar as conclusões, foram geradas figuras de fluência de radiação usando as tomografias computadorizadas, em que vemos a deposição de radiação nas estruturas delimitadas em diferentes planos de corte (Figuras $2, 3, 4 \in 5$).

Figura 1: Comparação da solução obtida usando o número fuzzy triangular (linha pontilhada) e o número fuzzy trapezoidal (linha preenchida). Curva azul indica o tumor (T), curva verde indica medula espinhal (C_1) , curva vermelha indica tronco cerebral (C_2) e curva turquesa indica laringe (C_3) .

(a) Usando o número fuzzy triangular.

(b) Usando o número fuzzy trapezoidal.

Figura 2: Visualização da deposição de dose de radiação no Paciente 3 através da TC mostrando estruturas, lavagem de dose, linhas de isodose e configuração de feixe em modo axial.

(a) Usando o número fuzzy triangular.

(b) Usando o número fuzzy trapezoidal.

Figura 3: Visualização da deposição de dose de radiação no Paciente 12 através da TC mostrando estruturas, lavagem de dose, linhas de isodose e configuração de feixe em modo axial.

Figura 4: Visualização da deposição de dose de radiação no Paciente 3 através da TC mostrando estruturas, lavagem de dose, linhas de isodose e configuração de feixe em modo coronal.

(a) Usando o número fuzzy triangular.

(b) Usando o número fuzzy trapezoidal.

Figura 5: Visualização da deposição de dose de radiação no Paciente 12 através da TC mostrando estruturas, lavagem de dose, linhas de isodose e configuração de feixe em modo coronal.

4 Considerações Finais

As soluções obtidas com ambos os números fuzzy atingiram o objetivo proposto de depositar pelo menos 95% da dose prescrita em 98% do volume tumoral, atacando o tumor. Além disso, os órgãos críticos foram preservados, visto que as médias de dosagens obtidas foram menores do que o valor limitante de radiação estabelecido para evitar complicações. Em conclusão, por meio de Histogramas de Dose-Volume, dosagem média e gráficos de fluência, o número fuzzy trapezoidal produziu um plano de tratamento viável mais indicado, pois evitou deposição excessiva de dose nos tecidos saudáveis, em comparação com a solução fuzzy triangular. Portanto, inferimos que o modelo abordado é capaz de resolver problemas de larga escala encontrando soluções pertinentes, sendo uma ferramenta importante na tomada de decisão no planejamento de radioterapia.

Agradecimentos

Este estudo foi financiado pela Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) e pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Referências

- Dorothy Abshire e Matthew K. Lang. "The Evolution of Radiation Therapy in Treating Cancer". Em: Seminars in Oncology Nursing 34.2 (2018). Technology in Cancer Care, pp. 151–157. ISSN: 0749-2081. DOI: https://doi.org/10.1016/j.soncn.2018.03.006. URL: https://www.sciencedirect.com/science/article/pii/S0749208118300196.
- [2] Sebastiaan Breedveld, Bas van den Berg e Ben Heijmen. "An interior-point implementation developed and tuned for radiation therapy treatment planning". Em: Computational Optimization and Applications (2017), pp. 209–242. URL: https://doi.org/10.1007/s10589-017-9919-4.
- [3] Sebastiaan Breedveld e Ben Heijmen. TROTS The Radiotherapy Optimisation Test Set. Versão 1.6. Zenodo, abr. de 2017. DOI: 10.5281/zenodo.2708302. URL: https://doi. org/10.5281/zenodo.2708302.
- [4] Rens van Haveren et al. "Fast and fuzzy multi-objective radiotherapy treatment plan generation for head and neck cancer patients with the lexicographic reference point method (LRPM)". Em: Physics in Medicine & Biology 62.11 (maio de 2017), p. 4318. DOI: 10.1088/1361-6560/62/11/4318. URL: https://dx.doi.org/10.1088/1361-6560/62/11/4318.
- [5] ICRU. "Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Radiation Therapy (IMRT)". Em: Journal of the ICRU 10.1 (2010). DOI: doi:10.1093/jicru/ ndq002.
- [6] F. M. Khan e J. P. Gibbons. Khan's the Physics of Radiation Therapy. Lippincott Williams & Wilkins, 2014.
- [7] Weldon A. Lodwick, K. Dave Jamison e Katherine A. Bachman. "Solving Large-Scale Fuzzy and Possibilistic Optimization Problems". Em: Fuzzy Optimization and Decision Making (2005), 4: 257–278.
- [8] Arnold Neumaier. "Fuzzy Modeling in Terms of Surprise". Em: Fuzzy Sets and Systems (2003), 135: 21–38.
- [9] H.-J. Zimmermann. Fuzzy programming and linear programming with several objective functions. Fuzzy Sets e Systems 1, 1978, pp. 45–55.