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Abstract. This paper introduces an A-stable adaptive integrator based on the Local Linearization
(LL) technique for the computer simulation of stochastic differential equations driven by additive
noise. To construct the method, novel embedding stochastic LL schemes and a adaptive strategy are
proposed. Simulation results are presented to illustrate the practical performance of the introduced
integrator.
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1 Introduction
Stochastic differential equations (SDEs) have become very important tools to model complex

processes influenced by random noises in several areas including physics, neuroscience, molecular
biology, finance, and economics, just to mention a few of them (see [8]). Since analytical solutions
to SDEs are rarely available, numerical integrators are indispensable to study the behavior of the
system under consideration. This motivates the search for computational methods able of solving
SDEs efficiently and in a numerically stable way. In this regard, adaptive integrators, which select
the stepsize variably along the integration-time, are highly desired, and in fact, the appropriate
one for practical applications.

This paper introduces a new A-stable adaptive integrator, based on the Local Linearization
(LL) technique, for the computer simulation of stochastic differential equations driven by additive
noise. To construct the method, embedding stochastic LL schemes and a novel adaptive strategy
are proposed.

The adaptive algorithm presented here features:

• a new stochastic LL-Taylor scheme (which attains stochastic order of convergence of 1.5 and
deterministic strong order of 3) embedded with a known SLL-Taylor scheme in an unconven-
tional way (Section 2)

• an adaptive strategy to choose the stepsizes (Section 3)

• advanced techniques to accept and reject steps and keep track of all the Brownian paths
generated throughout the simulation process (Section 3)

In Section 5, some simulation results are presented to illustrate the practical performance of
the introduced method.
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2 The Stochastic Local Linearization Method
The Stochastic local linearization (SLL) approach consists of approximating nonlinear SDEs

by locally linear SDEs. The SLL approach is particularly useful for stiff SDEs because it produces
stable schemes. By approximating the nonlinear SDE with a locally linear SDE, the SLL method
can provide a more efficient and accurate method for analyzing the behavior of stochastic systems,
in particular, those modeled by stiff equations.

Given a discretization of a time interval, the SLL approach consists in linearize the SDE around
each point of the discretization. One way to do this is by expanding the drift and diffusion terms
of the SDE by a Taylor series, and retaining only the linear terms, (but there are other ways to
achieve a local linearization), then the resulting linear SDE is then solved by matrix exponentiation
on each point of the time discretization.

Considering SDEs as
dX(t) = f(t, X(t))dt+G(t)dW (t), (1)

where X : R+ → Rd, f : R+ × Rd → Rd, G : R+ → Rd×m and, dW(t) is a Gaussian white noise,
which its integral is a Brownian motion W(t). Let gj be the column vector j of G, and gji be the
element at line i and column j of the matrix G. So, is intended to approximate (1) by another
simpler SDE in each instant of a given time discretization, in particular, a linear SDE which is close
to the original equation. For this, applying the deterministic Taylor expansion to approximate the
drift function f(t, X(t)) as a function of (t, X) at an instant (tn, Xn)

f(t, X(t)) ≈ f(tn, Xn) + fx(tn, Xn)(X(t)−Xn) + ft(tn, Xn)(t− tn), (2)

where fx is the jacobian matrix of f , and ft =
∂f
∂t . So, using (2), the following approximation of

(1) for t ∈ [tn, tn+1] is obtained

dX(t) = [fx(tn, X(t)−Xn) + (ft(tn, Xn)(t− tn) + f(tn, Xn))] dt+G(t)dW (t). (3)

This way the recursive formula of the SLL1 scheme as being the solution of the equation (3) at
tn+1, starting at Xn can be defined applying this for each subinterval of a partition of [t0, T ].
Observe that considering the fact that X(t) satisfies the equation (1) can make this approximation
of the drift function more accurate, so taking a Taylor expansion of order 3 with the appropriated
selection of terms you could obtain the following method that will be called SLL1.5 from now on.

dX(t) =

fx(X(t)−Xn) +

ft +
1

2

m∑
j=1

(Id×d ⊗ gj⊤)fxxg
j

 (t− tn) + f

 dt+

+G(t)dW (t)

(4)

where Id×d is the identity matrix of dimension d, and with f , fx, fxx and ft evaluated at (tn, Xn),
and gj at tn and, remark that d and m comes from the dimensions of f and G. This way, let the
SLL1.5 method as the solution of the equation (4), applied to each subinterval of a partition of
[t0, T ]. The complete deduction of the SLL1.5 method could be seen in [5].

2.1 Exponential schemes for SLL1 and SLL1.5

This section will show how to build schemes for the methods above as described in [4]. It is
important to note that the equations (3) of the SLL1 and (4) of the SLL1.5 represent SDEs with
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additive noise (1) and cannot be computed by themselves. Therefore, it is necessary to compute
their solution to obtain practical schemes.

This way, given hn = tn+1 − tn, suppose that

(SLL1 ) Xn+1 = Xn + ϕ1(tn, Xn;hn) + ξ1(tn, Xn;hn), (5)
(SLL1.5 ) Xn+1 = Xn + ϕ1.5(tn, Xn;hn) + ξ1.5(tn, Xn;hn), (6)

be solutions of (3) and (4) respectively . Where ϕ represents the deterministic part and ξ is the
stochastic part of the solution.

This way, from [4] is known that ϕ1 of (5) could be expressed by

ϕ1(tn, Xn;hn) =
(
Id×d 0d×2

)
eΛ1(tn, Xn)hn

 0d×1

0
1

 , (7)

where the matrix Λ1 is given by

Λ1(tn, Xn) =

 fx(tn, Xn) ft(tn, Xn) f(tn, Xn)
01×d 0 1
01×d 0 0

 , (8)

where 0a×b is the null a× b matrix. And ξ1 is given by

ξ1(tn, Xn;hn) = G(tn)∆Wn, (9)

where ∆Wn = W (tn+1) − W (tn) ∼
√
hnN (0, 1) where N(0, 1) is an m-dimensional Standard

Normal distribution. And this way the exponential scheme of SLL1 is defined. Similarly to SLL1,
the exponential scheme for SLL1.5 is given by

ϕ1.5(tn, Xn;hn) =
(
Id×d 0d×2

)
eΛ1.5(tn, Xn)hn

 0d×1

0
1

 , (10)

with Λ1.5 is given by

Λ1.5(tn, Xn) =

=

 fx(tn, Xn) ft(tn, Xn) +
1
2

∑m
j=1(Id×d ⊗ gj(tn)

⊤)fxx(tn, Xn)g
j(tn) f(tn, Xn)

01×d 0 1
01×d 0 0

 (11)

Now, for ξ1.5 of (6) the Itô-Taylor expansion of order 1.5 is considered only for the stochastic part
of (4), this way, discarding the rest r3

ξ1.5(tn, Xn;hn) = G(tn)

∫ tn+1

tn

dW (s)︸ ︷︷ ︸
=∆Wn

+fx(tn, Xn)G(tn)

∫ tn+1

tn

∫ s

tn

dW (u)ds︸ ︷︷ ︸
=∆Zn

+

+Gt(tn)hn

∫ tn+1

tn

dW (s)︸ ︷︷ ︸
=∆Wn

−Gt(tn)

∫ tn+1

tn

∫ s

tn

dW (u)ds︸ ︷︷ ︸
=∆Zn

, (12)
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where

∆Wn =

∫ tn+1

tn

dW (s) and ∆Zn =

∫ tn+1

tn

∫ s

tn

dW (u)ds, (13)

then

ξ1.5(tn, Xn;hn) = G(tn)∆Wn + fx(tn, Xn)G(tn)∆Zn +

+Gt(tn)(∆Wnhn −∆Zn), (14)

this way, the exponential scheme of SLL1.5 is defined from (6), (10) and (14). From [7] is known
that SLL1 and SLL1.5 attain stochastic strong order of convergence of 1 and 1.5 respectively, as
their names suggest, and a deterministic strong order of convergence of 2. In [5], this author used
the two methods above to build an adaptive LL scheme for SDEs, and it gave good results in terms
of efficiency, and accuracy, but it fails when simulating SDEs where the stochastic part became
too small because when g = 0, both schemes (SLL1, and SLL1.5 ) became the same, and this will
make the adaptive algorithm fail, this would be clear when the adaptive algorithm be presented,
but that is the motivation behind the SLL scheme presented below.

2.2 Strong local Linearization scheme of order (3.0, 1.5)

In order to improve the SLL1.5 method described above, the same idea presented in [3] for the
LL scheme for ODEs was used here, which involves adding part of the deterministic rest to the LL
approximation of the SDE. This way we introduce the following new SLL scheme for SDEs

SLL (3.0, 1.5) Xn+1 = Xn + ϕ1.5(tn, Xn;hn) + ξ1.5(tn, Xn;hn), (15)

ϕ(3, 1.5)(tn, Xn;hn) =
(
Id×d 0d×3

)
eΛ(3, 1.5)(tn, Xn)hn

(
0d×1 0 0 1

)⊤
, (16)

where

Λ(3, 1.5)(tn, Xn) =


fx(tn, Xn) a2 a1 f(tn, Xn)

01×d 1 0 0
01×d 0 1 0
01×d 0 0 0

 , (17)

with

a1 = ft(tn, Xn) +
1

2

m∑
j=1

(Id×d ⊗ gj(tn)
⊤)fxx(tn, Xn)g

j(tn) (18)

a2 = id×d ⊗ f⊤(tn, Xn)fxx(tn, Xn)f(tn, Xn) + ftt(tn, Xn) +

+2fxt(tn, Xn)f(tn, Xn). (19)

From theorem 4.2 in [4], can be proved that it attains a deterministic order of convergence of
3, and strong order of convergence of 1.5 in the stochastic sense.

2.3 A-Stability of SLL schemes

Theorem 2.1. The Local Linearization schemes (in particular SLL1, SLL1.5, and SLL(3, 1.5))
are A-stable.
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Proof. Given a test equation
dX(t) = λX(t)dt+ dW (t), (20)

the ODE of its deterministic part is given by

dX(t) = λX(t)dt, (21)

this way, both equations (3) and (4) became

dX(t) = λX(t)dt+G(t)dW (t), (22)

So, all the LL discretizations of (20) could be represented by

Xn+1 = Xn + ϕ(tn, Xn) + ξn(tn) (23)

where Xn + ϕ(tn, Xn) is a step of a LL discretization for the ODE (21), and ξn(tn) is a step from
some discretization of the stochastic problem (22). From [2] we know that the LL schemes are
A-stable for ODEs and, how ξn doesn’t depend on Xn for all n, this implies that the SLL schemes
are A-stables.

3 Adaptive strategy

New step selection (Adapted from [1])
Given the approximations y1n and y1.5n characterized by (5) and (15) respectively, at time tn

and a timestep h

1. Compute the approximations y1n+1 and y1.5n+1 at tn+1 = tn + h.

2. Evaluate the Error

error =

√√√√1

d

d∑
i=1

(
y1.5n − y1n

toli

)2

. (24)

3. Compute the new timestep.

hnew = h

√(
1

error

)
, (25)

where h is the size of the last step given.

4. Validation of y1.5n . If error ⩾ 1 and h − hmin > 0, y1.5n is rejected, and return to Step 1,
and set h = hnew

Else, the step y1.5n is accepted at the instant tn+1, and return to step 1, with n = n+1 and
h = hnew.

5. Final timestep control. If tn+1 = T , the algorithm stops. If tn+1 + hnew > T , recompute
hnew = T − tn+1.

Note that the error estimation (24) will become zero if the approximations y1n+1 and y1.5n+1 where
the same, if this happens for every n this will lead to the acceptance of every step tried.
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3.1 Reconstructing the Brownian Path
When a step is rejected in the previous algorithm the Brownian path is updated, and this

generated random number cannot be ignored, but the next step to try will fall before the last value
of the Brownian path, as can be seen in the following diagram

h︷ ︸︸ ︷
ha︷ ︸︸ ︷

p − − − − p
hb︷ ︸︸ ︷

− − − − − − − − − − − − p
t t+ ha t+ h

︸ ︷︷ ︸
∆W[t,t+ha]

︸ ︷︷ ︸
∆W[t+ha,t+ha+hb]︸ ︷︷ ︸

∆W[t,t+h]

To solve this problem, the solution presented in [1] was used with a small improvement, here, the
Brownian path is updated for every tried step, when the original only updates for the accepted
steps, and for the first step rejected.

4 Embedding Stochastic LL schemes
In order to create useful adaptive schemes, they need to be computationally efficient and, when

LL schemes are used this becomes quite complicated because on each attempt to take a step, is
needed to compute two exponential of matrices, which is computationally costly. In [5] the author
presented a way to embed the schemes SLL1 and SLL1.5, which later evolved to a published paper
[6], where presented a more general approach to embed two exponential schemes. This approach
consists in alter the Padé algorithm3 to compute the exponential of a matrix to compute both
exponentials in only one.

5 Simulations
Example 5.1. Given the following SDE

d

(
x1(t)
x2(t)

)
=

[
A2 ·

(
x1(t)
x2(t)

)
+

(
2sen(t)

998(cos(t)− sen(t))

)]
dt+ eA2t

(
1
1

)
dW (t)

(26)

where A2 =

(
−2 1
998 −999

)
, with initial condition

(
y1(0)
y2(0)

)
=

(
2
3

)
.

And solution (
x1(t)
x2(t)

)
= 2e−t.

(
1
1

)
+

(
sen(t)
cos(t)

)
+ e−t.

(
1
1

)
.W (t). (27)

Experiment: First will be computed the solution with the adaptive scheme presented here
with tolerance tol = 10−4, them, a solution with fixed stepsizes will be computed with a number
of steps equal to the sum of accepted and rejected steps that came out of the computation of the
solution with the adaptive scheme (to make a fair competition). And both will run over the same
Brownian path. This was repeated 2000 times to take the averages of error and accepted and

3The Padé algorithm is one of the standard algorithms to compute the exponential of matrices numerically.
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rejected steps, where the error is given by error = max

{∑n
i=0

√
Xi−X̂i

n

}
. The results are in Table

1.

Table 1: Experiment Results.
Error ± sd Number of Steps (Accept./Rejec.) Comp. time

Adap. SLL 2.3809× 10−6 ± 8.0× 10−7 974.8± 30.9 | 159.2± 11.9 0.30± 0.0353
SLL (3, 1.5) 6.3604× 10−4 ± 3.1× 10−4 1134.1± 40.2 | − 0.47± 0.0741

6 Summary and conclusions
This scheme uses a state-of-the-art Local Linearization approach to construct stable schemes

that are embeddable in a non-conventional way using what was presented in [6], and has a well-
proved variable-stepsize strategy while keep track of the all Brownian path generated during the
simulation. The results shown that the adaptive SLL scheme presented has great performance for
the example 5.1, achieving an error three orders of magnitude smaller than the same method with
fixed stepsizes as can be seen in Table 1.
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