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Abstract. We construct via line integral and characterize a class of bivariate continuous dis-

tributions with a multiplicative representation of the sum of hazard gradient components. The

corresponding joint survival function is a solution of functional equation allowing to generate new

members of the class. We apply a particular member to �t a big Canadian joint life insurance data

set improving the inference and conclusions made by of another authors.
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1 Introduction and preliminaries

Many continuous multivariate distributions have been developed to model the dependence
structure of data sets in a wide range of areas. In general, the goal is to construct a multivariate
distribution which �ts properly a particular data with speci�c features. In general, the building
procedure has to take into account that the observed data are output of a real process following some
physical law. The functional form of the sum of gradient vector components plays a crucial role
to describe the nature of a process under interest. This is our motivation to use the line integral
of gradient vector representation of the joint survival function, �rstly introduced in probability
theory and its applications in [5]. The aim is to construct a family of multivariate probability
distributions with pre-speci�ed properties.

For simplicity, we will examine the bivariate case. More speci�cally, let us consider a non-
negative bivariate continuous random vector (X,Y ) de�ned by its joint survival function S(x, y) =
P (X > x, Y > y) for all x, y ≥ 0. If the �rst partial derivatives of S(x, y) exist, the quantities

r1(x, y) =
∂
∂x

[
− lnS(x, y)

]
and r2(x, y) =

∂
∂y

[
− lnS(x, y)

]
can be interpreted as the univariate

failure rates of conditional distributions of each variate, given certain inequality of the remainder,
i.e., of (X |Y > y) and (Y |X > x). Observe that r1(x, 0) = rX(x) and r2(0, y) = rY (y), where
rX(x) and rY (y) are the marginal failure rates.

When the joint survival function S(x, y) has continuous second order partial derivatives at all
points (x, y) in the �rst quadrant, the vector-valued function R(x, y) = (r1(x, y), r2(x, y)) is called
a hazard gradient of the random vector (X,Y ). The components r1(x, y) and r2(x, y) can not be
arbitrary and must be related by equation ∂

∂y r1(x, y) =
∂
∂xr2(x, y) for all x, y ≥ 0.

The hazard gradient vector R(x, y) = (r1(x, y), r2(x, y)) uniquely determines (characterizes)
the bivariate distribution by means of line integral through exponential representation

S(x, y) = exp

{
−
∫
C
R(z) dz

}
, (1)
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where C is any su�ciently smooth continuous path beginning at (0, 0) and terminating at (x, y).
Note that "dz" in (1) means that we are moving along the curve C, instead on coordinate axes.
The relation (1) holds provided that along the path of integration S(x, y) is absolutely continuous,
consult [5]. A discrete version of (1) was introduced in [3] where the discrete line integral is de�ned
on an uniform grid with nodes (x, y) for x, y = 0, 1, 2 . . .

Line integrals of the type appearing in (1) can be evaluated by expressing a path C in a
parametric form. Since the line integral of gradient vector does not depend on the path, one
can arbitrarily choose particular interesting smooth continuous connecting paths C1 from (0, 0)
to (x0, y0) and C2 from (x0, y0) to (x, y), such that

∫
C R(z) dz =

∫
C1

R(z) dz +
∫
C2

R(z) dz. This
additive property can be applied to get an expression of the line integral in order to obtain via
(1) the corresponding representation of the joint survival function S(x, y) under the knowledge of
analytical form of the components r1(x, y) and r2(x, y) of gradient vector R(x, y).

For instance, let x ≥ y ≥ 0 and consider a path C as a union of two line segments C1 and C2
linking the points (0, 0) and (x− y, 0) and the point (x− y, 0) with (x, y), correspondingly. These
paths can be parametrized as follows

C1 : z1(t) = t, z2(t) = 0 for t ∈ [0, x− y] with z′1(t) = 1, z′2(t) = 0

and

C2 : z1(t) = x− y + t, z2(t) = t for t ∈ [0, y] with z′1(t) = z′2(t) = 1,

where z′1(t) and z
′
2(t) mean the corresponding �rst derivatives. Applying (1) leads to

S(x, y) = SX(x− y) exp

{
−
∫ y

0

[r1(x− y + t, t) + r2(x− y + t, t)]dt

}
,

where SX(x) = P (X > x) is the marginal survival function of random variable X.
By analogy, we can compute S(x, y) when x ≤ y. We link both expressions as follows

S(x, y) =

{
SX(x− y) exp

{
−
∫ y

0
[r1(x− y + t, t) + r2(x− y + t, t)] dt

}
if x ≥ y ≥ 0;

SY (y − x) exp
{
−
∫ x

0
[r1(t, y − x+ t) + r2(t, y − x+ t)] dt

}
if y ≥ x ≥ 0,

(2)

where SY (y) = P (Y > y) is the survival function of random variable Y .
If S(x, y) is di�erentiable at (x, y), the sum r(x, y) = r1(x, y) + r2(x, y) is the directional

derivative of − ln[S(x, y)] along the unit vector (1, 1) evaluated at t = 0, i.e.,

r(x, y) = lim
t→0

− lnS(x+ t, y + t)

t
=

∂

∂t
[− lnS(x+ t, y + t)]

∣∣∣
t=0

.

Therefore, the sum r(x, y) is an important function to be used in a �rst step of modeling under
the absence of information. This fact inspired the authors of [6] who characterized a family of
bivariate continuous distributions such that the sum of components of the hazard vector has an
additive decomposition, i.e., r1(x, y) + r2(x, y) = a0 + a1f(x) + a2g(y), where f(x) and g(y) are
non-negative continuous integrable functions with constants (parameters) a0, a1, a2 ≥ 0. The
corresponding class of bivariate distributions possessing such a property is huge. It has members
that can be symmetric or asymmetric, absolutely continuous or with a singular component along
the line {x = y}, positive or negative quadrant dependent.

Here, we will complement the study in [6] considering bivariate continuous distributions speci-
�ed by relation

r(x, y) = r1(x, y) + r2(x, y) = A0 +A1f(x)g(y) for x, y ≥ 0, (3)
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with coe�cients A0, A1 ≥ 0, where f(x) and g(y) are non-negative continuous di�erentiable func-
tions such that their product f(x)g(y) is integrable. Let us denote by L(x) the class of bivariate
continuous distributions generated by relation (3), with x = (x, y).

The exposition is organized as follows. In Section 2 we obtain the joint survival function of
distributions belonging to the class L(x). We establish several equivalent representations and
related functional equations. In Section 3 we consider a particular member of L(x) and �t the
corresponding model generated by relation (3) to a Canadian joint life insurance data set analyzed
by many authors. We �nalize with conclusions.

2 Main properties of the class L(x)
The class L(x) generated by relation (3) includes absolutely continuous distributions (if A0 = 0,

for example) and those having a singular component as well. Therefore, the corresponding joint
survival function S(x, y) is decomposable by an absolutely continuous component Sac(x, y) in the
support of R2

+ = {(x, y)|x, y ≥ 0} and a singular one, Ssi(max{x, y}) with support on the set
{(x, y) ∈ R2

+|x = y}, i.e.,

S(x, y) = (1− α)Sac(x, y) + αSsi(max{x, y}) for α = P (X = Y ) ∈ [0, 1]. (4)

The bivariate survival function S(x, y) in (4) is proper, i.e. when
∂2

∂x∂y
S(x, y) ≥ 0, if and only if

both Sac(x, y) and Ssi(max{x, y}) are valid survival functions.
We will derive �rst the expression for the joint survival function S(x, y) of bivariate distributions

belonging to the class L(x) and we will deduce when the joint distribution is absolutely continuous.
It will be shown that S(x, y) is a solution of a functional equation. As a result, we suggest algorithm
to construct new distributions of the class L(x). Several particular members of L(x) are considered
as well.

2.1 Joint survival function and closure properties

It follows our �rst characterization for distributions belonging to the class L(x) de�ned by (3).

Theorem 2.1. The members of the class L(x) have a joint survival function S(x, y) given by

S(x, y) =

{
SX(x− y) exp

[
−A0y −A1

∫ y

0
f(x− y + t)g(t)dt

]
, if x ≥ y ≥ 0;

SY (y − x) exp
[
−A0x−A1

∫ x

0
f(t)g(y − x+ t)dt

]
, if y ≥ x ≥ 0,

(5)

if and only if relation (3) is satis�ed.

Proof. Let (3) be ful�lled. Substitute r(x, y) = A0 +A1f(x)g(y) in (2) to get representation (5).
Conversely, let (5) be true. We will check that (3) is valid as well.
Take a ln in both sides of (5) and di�erentiate − ln[S(x, y)] with respect to x to obtain

r1(x, y) =

{
rX(x− y) +A1

∫ y

0
f ′(x− y + t)g(t)dt, if x ≥ y;

−rY (y − x) +A0 +A1f(x)g(y)−A1

∫ x

0
f(t)g′(y − x+ t)dt, if y ≥ x,

where f ′ and g′ are the �rst derivative of functions f and g.
Similarly, di�erentiation of − ln[S(x, y)] with respect to y leads to

r2(x, y) =

{
−rX(x− y) +A0 +A1f(x)g(y)−A1

∫ y

0
f ′(x− y + t)g(t)dt, if x ≥ y;

rY (y − x) +A1

∫ x

0
f(t)g′(y − x+ t)dt, if y ≥ x.
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Using these expressions of r1(x, y) and r2(x, y), it is direct to check that (3) is satis�ed in all cases
(x > y, x < y and x = y).

Remark 2.1. (Bounds for marginal hazard rates): The joint survival function S(x, y) given
by (5) is proper only for certain marginal distributions of X and Y .

For y ≥ x in the proof of Theorem 2.1 we got that

r1(x, y) = −rY (y − x) +A0 +A1f(x)g(y)−A1

∫ x

0

f(t)g′(y − x+ t)dt.

Since r1(x, y) ≥ 0 for all x, y ≥ 0, the substitution x = 0 in last relation implies the upper bound
for the marginal failure rate rY (y) ≤ A0 +A1f(0)g(y).

By analogy, from inequality r2(x, y) ≥ 0 when x ≥ y we conclude that rX(x) ≤ A0+A1f(x)g(0).

The restrictions on marginal failure rates in Remark 2.1 and condition
∂2

∂x∂y
S(x, y) ≥ 0 deter-

mine the parameter space of models belonging to the class L(x).

Remark 2.2. (Closure properties of L(x)): Denote by S,S1 and S2 survival functions of
bivariate distributions belonging to the class L(x). It is readily veri�ed that the following closure
properties are ful�lled.

(a) S1,S2 ∈ L(x), then their product S1S2 ∈ L(x);
(b) S ∈ L(x), then Sc ∈ L(x) for some c ≥ 1;
(c) S1,S2 ∈ L =⇒ Sc1

1 Sc2
2 ∈ L(x) for c1, c2 ≥ 1;

(d) If (X,Y ) ∈ L(x), then S(cx, cy) ∈ L(x) for c > 0.
These closure properties can be used to generate new members of the class L(x) (with more

parameters) using as a base existing ones. Another building procedure is suggested in Remark 3.1.

We present without a proof a characterization theorem o�ering conditions that identify the
absolutely continuous members of the class L(x), i.e., when α = P (X = Y ) = 0 in (4).

Theorem 2.2. Consider the class L(x) speci�ed by the joint survival function given in (5). Let
the marginal distributions of X and Y have absolutely continuous density functions fX and fY ,
respectively. The survival function S(x, y) in (5) is absolutely continuous if and only if

A0 +A1f(0)g(0) = fX(0) + fY (0).

2.2 Related functional equations

The next statement shows that the class L(x) can be characterized by a functional equation.

Theorem 2.3. S(x,y) speci�ed by (5) is a solution of the functional equation

S(x+ t, y + t) = S(x, y)S(t, t) exp

{
−A1

∫ t

0

[f(x+ u)g(y + u)− f(u)g(u)]du

}
(6)

for all x, y, t ≥ 0.

Proof. Let (5) be ful�lled. Assume that x ≥ y and apply (5) for S(x+ t, y + t), S(x, y) and S(t, t)
to con�rm that relation (6) is true. The same conclusion is valid if y ≥ x.

Conversely, let the functional equation (6) be true. De�ne a function B(x, y), such that

S(x, y) = B(x, y) exp

{
−A1

∫ x

0

f(u)g(u)du−A1

∫ y

0

[f(u)− f(x− y + u)]g(u)du

}
. (7)
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After some algebra one obtains the relation B(x + t, y + t) = B(x, y)B(t, t) for all x, y, t ≥ 0,
which helps to arrive into to the �rst equation in (5) for x ≥ y.

By analogy, one would get the second expression (5) when y ≥ x.

In the proof of Theorem 2.3 we concluded that, for all x, y, t ≥ 0, the functional equation
B(x + t, y + t) = B(x, y)B(t, t) is ful�lled. Note that the function B(x, y) is not necessarily
a proper joint survival function. But, when it is, then the last functional equation generates
bivariate distributions possessing the classical bivariate lack of memory property (BLMP), consult
[4] to see a general representation of these distributions and examples. Therefore, one might use
the following procedure to construct bivariate distributions belonging to the class L(x).

Remark 2.3. (Building procedure):
1. Choose a bivariate distribution with joint survival function S1(x, y) satisfying the BLMP;

2. Based on relation (7), multiply S1(x, y) by the exponential expression to get a new member

of the class L(x) with extended parameter space, containing parameters of S1(x, y).

We will discuss one more classical functional equation related to the class L(x) and its particular
cases. Let the functions f and g in (3) are positive and A1 > 0.

Substitute ψ(x, y) = r(x, y) − A0 = A1f(x)g(y). Then, f(x) =
ψ(x, 0)

A1g(0)
and g(y) =

ψ(0, y)

A1f(0)
leading to the functional equation

ψ(x, y)ψ(0, 0) = ψ(x, 0)ψ(0, y), x, y ≥ 0. (8)

Case 1. We will search solutions of (8) speci�ed by ψ(x, y) = A1F (x + y), where F is a non-
negative increasing continuous function. In such a case, (8) can be rewritten as a functional
equation F (x + y)F (0) = F (x)F (y) with non-trivial solutions F (x) = eA(x), where the function
A(x) is an arbitrary solution of additive equation A(x + y) = A(x) + A(y), see Theorem 1.36 in
[7], pages 27-28. Hence,

r(x, y) = A0 +A1e
ax+by for some a > 0, b > 0. (9)

Case 1A. Let A0 = 0. In [2] is established that the bivariate Gompertz distribution

S(x, y) = exp{−c(eax+by − 1)} for some a > 0, b > 0, c > 1 (10)

is characterized by (9), with A0 = 0 and A1 = c(a+ b).
Thus, if A0 = 0, f(0) ̸= 0 and g(0) ̸= 0, then the only possible functions in relation (3) are

f(x) = eax and g(y) = eby with A1 = c(a+ b), leading to the bivariate Gompertz distribution.

Case 1B. Let A0 ̸= 0. Equation (9) is satis�ed for a random vector (X,Y ) generated by the
stochastic representation

(X,Y ) =d (min(Z,U),min(T, V )), (11)

where (Z, T ) follows the bivariate Gompertz distribution speci�ed by (10) and being independent
of the vector (U, V ) exhibiting BLMP with a singular component. In other words, the vector (X,Y )
is bivariate Gompertz-Makeham distributed. We summarize the above �ndings in the next.

Corollary 2.1. Consider a subclass L1(x) of L(x) speci�ed by r(x, y) = A0 + A1F (x + y) for
x, y ≥ 0, where F is a non-negative continuous increasing function. Then, the subclass L1(x) has
two main members: the bivariate Gompertz distribution given by (10), if A0 = 0 and the bivariate
Gompertz-Makeham distribution, if A0 > 0.
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Example 2.1. Suppose that (U, V ) in (11) follows the classical bivariate exponential distribution
with joint survival function exp{−λ1x − λ2y − λ3 max(x, y)} for λ1, λ2, λ3 > 0. Then, the joint
survival function of the vector (X,Y ) speci�ed by (11) is given by

S(x, y) = exp{−c(eax+by − 1)− λ1x− λ2y − λ3 max(x, y)}. (12)

Case 2. Let f(0) = g(0) = 0 and A1 > 0 in (3). Assume that r(x, y) − A0 = G(xy), where G is
a non-negative increasing continuous function. Then the functional equation G(xy) = A1f(x)g(y)
is a Pexider equation with non-trivial solution G(x) = A1x

c for c > 0, see Result 1.56(d) in [7].
Thus, f(x) = axc and g(y) = byc, with A1 = ab and c > 0. Therefore, we have

Corollary 2.2. Consider a subclass L2(x) of L(x) speci�ed by r(x, y) = A0+A1G(xy) for x, y ≥ 0,
where G is a non-negative continuous increasing function. Then, the distributions of the subclass
L2(x) are such that r(x, y) = A0 +A1(xy)

c for some positive constant c.

Example 2.2. Let c= 1 in Corollary 2.2, i.e., r(x, y) = r1(x, y) + r2(x, y) = A0 + A1xy. Then
f(x) = x, g(y) = y and from (5) we obtain

S(x, y) =

SX(x− y) exp
{
−A0y − A1(x−y)y2

2 − A1y
3

3

}
, if x ≥ y;

SY (y − x) exp
{
−A0x− A1(y−x)x2

2 − A1x
3

3

}
, if x ≤ y.

(13)

The functional equation (6) in our case transforms into

S(x+ t, y + t) = S(x, y)S(t, t) exp

{
−A1

[
xyt+

(x+ y)t2

2

]}
. (14)

Therefore, due to Theorem 2.3 relations (13) and (14) are equivalent.
The building procedure from Remark 2.3 reads as follows:
1) Choose bivariate distribution possesing the BLMP;

2) Multiply the corresponding joint survival function by exp
[
−A1x

3

3 + A1(x−y)y2

2

]
to get new member of the class L2(x) when c = 1.

3 Joint life insurance application

As an application, we examine a sample of censored residual lifetimes of couples of insureds
extracted from a data set of annuities contracts of a Canadian life insurance company, registered
in the period from December 29, 1988 to December 31, 1993. The data set is both left and
right truncated. The available information provides the entry ages of the two spouses and the
corresponding censored residual lifetimes. The Canadian data set has already been analyzed by
many authors, consult [1].

We considered contracts with entry ages greater than 60 only, for a total number of observations
equal to 9535. It is convenient to �t the data with the model (12) belonging to the subclass L1(x)
since it includes a possibility of common external shocks, governed by parameter λ3. Thus, we
postulate marginal distributions of Gompertz-Makeham type (mainly used in actuarial practice).

We used the two-stage maximum likelihood technique: �rst we compute the maximum likeli-
hood estimates of the parameters of the marginal distributions (i.e., â, λ̂1 and b̂, λ̂2), and then we

obtain the maximum likelihood estimates of the remaining dependence parameters ĉ and λ̂3 assum-
ing those already estimated as given. We did goodness of �t comparison with other models in liter-
ature through the Bayesian Information Criteria (BIC) concluding that the model (12) outperforms
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the existing ones. For example, the best �t reported in [1] based on the Extended Marshall-Olkin
model produces BIC = 3088, 09 while the use of model (12) implies BIC = 2732, 12.

Many joint life actuarial products depend on the residual lifetimes joint survival distribution
values on the straight line {x = y}. For instance, the continuous n-years joint life annuity net
premium is de�ned by

∫ n

0
exp(−ku)S(u, u)du, where k is the instantaneous interest rate. It has

been calculated in our case, o�ering an attractive alternative for actuarial practice, where for
simplicity the independence assumption is usually adopted.

4 Conclusions

In this note we show how to create bivariate continuous probability models through the expo-
nential representation (1) of the joint survival function involving line integral by taking into account
the physical nature of the data analyzed. We study the class L(x) generated by the relation (3)
containing many classical and new bivariate models. We established several characterization theo-
rems and equivalent relations (consult Theorem 2.1, Theorem 2.3 and functional equation (8)) and
o�er building procedures. The method proposed is a new powerful tool and might be successfully
extended to the multivariate case for the needs of data analysis of big data sets. An interesting
problem for a future research is to de�ne, study and apply a discrete version of the class L(x) on
uniform and logically connected grids.
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