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Investigation of non-smooth solutions in �nite elasticity

using the phase-plane method
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Abstract. We use the phase-plane method to investigate a class of problems in �nite elasticity
for which the spatial derivative of a solution may have a �nite jump at an interior point of the
domain. In particular, we consider the equilibrium of a nonlinearly elastic annular disk �xed on
its inner surface and subjected to a constant uniform pressure on its outer surface. We show that
the solution of this problem is non-di�erentiable at an interior point when the applied pressure
exceeds a certain value. This value serves as an upper bound for the pressure that can be applied
without violating the range of validity of the in�nitesimal theory. On the other hand, non-smooth
deformation �elds are of interest in the study of crystalline materials that can exist in more than
one crystal structure, such as the shape-memory alloys.
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1 Introduction

Problems of interest in mechanics are described by nonlinear di�erential equations, for which
determining a solution in closed form or verifying the existence and uniqueness of solutions is not a
simple task. In such cases, it is common to use numerical methods to obtain approximate solutions.
However, numerical methods may not provide all the possible solutions. The undetected solutions
may occur in real applications and cause an unexpected failure of a component, such as buckling
of a bar. To avoid that, we can use tools of the qualitative theory of di�erential equations to better
understand the problem at hand. For instance, the phase-plane method yields a graphical tool to
study the properties of solutions of di�erential equations.

In this work, we use the phase-plane method to investigate a class of problems in �nite elasticity
for which the spatial derivative of a solution may have a �nite jump at an interior point of the
domain depending on the applied boundary condition. This investigation yields qualitative results
that are very helpful in the selection of adequate numerical strategies for the approximate solution
of di�erential equations.

In particular, we consider the problem of an elastic annular disk with uniform thickness in
equilibrium in the absence of body force. The disk is �xed on its inner surface of radius Ri > 0
and compressed by a constant and uniform pressure p > 0 on its outer surface of radius Re > Ri.
The disk is made of a transversely isotropic material with a radial symmetry axis.

In the context of the classical linear theory of elasticity, the solution of the disk problem is unique
and, for Ri = 0, predicts that the stresses go monotonically to minus in�nity as we approach the
center of the disk, even for small values of p, [4]. In this theory, large stresses imply large strains,
which violates the hypothesis of in�nitesimal strains on which the theory is based upon.

In the context of the �nite elasticity theory, Antman and Negrón-Marrero [2] have studied the
disk problem in the case Ri = 0 and have used the phase-plane method to show that the stresses
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also go monotonically to minus in�nity at the center of the disk. The authors have not completely
characterized the elastic material. Instead, they have made some physical assumptions about its
elastic response. Although these assumptions are general and suitable for many materials, it in-
cludes certain conditions that preclude non-monotonic relations between stresses and stretches.
This type of non-monotonic response is of interest in the investigation of solids that undergo a
deformed state with multiple solid phases, such as the shape-memory alloy NiTi and the ferroelec-
tric alloy BaTiO3, [1]. We consider that the disk is made of an anisotropic St Venant-Kirchho�
material, which corresponds to a natural constitutive extension of the in�nitesimal to the �nite
elasticity theory. In addition, this material model has a non-monotonic relation between radial
stress and radial stretch.

In Section 2 we present some background material about the �nite elasticity theory and for-
mulate the disk problem. In Section 3 we use the phase-plane method to study the solution of the
disk problem. In Section 4 we present some concluding remarks.

2 The Disk Problem

Let B ⊂ R3 denote the undistorted reference con�guration of a nonlinearly elastic solid in
equilibrium. Points x ∈ B are mapped into points y , f(x), where f : B → R3 is the deformation
�eld. The boundary ∂B of B is composed of two non-intersecting parts, ∂1B and ∂2B, ∂B =
∂1B ∪ ∂2B, ∂1B ∩ ∂2B = ∅, such that f(x) = f̄(x) for x ∈ ∂1B, where f̄ is a given function, and the
traction �eld t̄(x) is prescribed for x ∈ ∂2B.

The �rst Piola-Kirchho� stress tensor at x, denoted by P(x) ∈ Lin, is related to the deformation

f by P(x) = P̂(x,∇f(x)), where P̂ : B × Lin→ Lin is the response function of the material, ∇ is
the gradient operator with respect to x, and Lin is the space of linear transformations de�ned on
R3.

In the absence of body force, the deformation �eld f must satisfy the equilibrium equation

Div P̂(x,∇f(x)) = 0 , x ∈ B , (1)

and the boundary conditions

f(x) = f̄(x) , for x ∈ ∂1B , P̂(x,∇f(x))N = t̄(x) , for x ∈ ∂2B , (2)

where Div is the divergence operator with respect to x and N ∈ R3 is the outer unit normal vector
to ∂2B at x.

We assume that the material is hyperelastic, so that

P̂ = ∂ W/∂F , (3)

where W = W (x,F) is the strain energy density function of the material, F , ∇f , and ∂ (·)/∂F
is the gradient operator with respect to F. Near the reference con�guration, where deformations
are small but not necessarily in�nitesimal, W can be written as

W =
1

2
E · C[E] , E ,

1

2
(FT F− I) , (4)

where E is the Green St Venant strain tensor and C is the elasticity tensor. If the material is
isotropic, then it is the classical St Venant-Kirchho� material; otherwise, we call it the anisotropic

St Venant-Kirchho� material.
Let {eR, eΘ, eZ} denote the usual orthonormal cylindrical basis at x associated with the cylin-

drical coordinates (R,Θ, Z), such that x = R eR(Θ) +Z eZ . Similarly, let {er, eθ, ez} and (r, θ, z)
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be the corresponding orthonormal cylindrical basis and coordinates, respectively, at y, such that
y = r er(θ) + z ez. We shall omit the dependence of eR and er on Θ and θ, respectively.

We consider the equilibrium problem of a nonlinearly elastic annular disk with uniform thickness
h. The disk is �xed on its inner surface of radius Ri > 0 and compressed by a constant and
uniform pressure p > 0 on its outer surface of radius Re > Ri. The disk is made of an anisotropic
St Venant-Kirchho� material that is transversely isotropic with respect to the radial direction.
Therefore, its strain energy density function is given by (4), where the nonzero components of
the elasticity tensor C with respect to {eR, eΘ, eZ} are constant and given by the elastic moduli
c11, c12, c22, c23, c66. All lengths can be rendered dimensionless by normalizing them with respect
to Re, so that x = (R,Θ, Z) ∈ [α, 1]× [0, 2π]× [0, β], where α , Ri/Re and β , h/Re.

We want to �nd a radially symmetric deformation �eld f , such that points x ∈ B move along
radial lines according to

f(R,Θ, Z) = r(R) er + Z ez . (5)

Since F , ∇f , we have that

F = ν(R) er ⊗ eR + τ(R) eθ ⊗ eΘ + ez ⊗ eZ , ν(R) , r′(R) , τ(R) , r(R)/R , (6)

where the explicit dependence on x = (R,Θ, Z) is omitted and (·)′ denotes the derivative with
respect to R. In view of (5), the dimensionless thickness β has no in�uence on the results of this
work. Substituting (6) into (4) and then using the resulting expression together with (3), we arrive
at

P = Prr(R) er ⊗ eR + Pθθ(R) eθ ⊗ eΘ + Pzz(R) ez ⊗ eZ , (7)

Prr(R) = P̂rr(τ, ν) =
[
c11 (ν2 − 1) + c12 (τ2 − 1)

]
ν/2, (8)

Pθθ(R) = P̂θθ(τ, ν) =
[
c12 (ν2 − 1) + c22 (τ2 − 1)

]
τ/2 , (9)

Pzz(R) = P̂zz(τ, ν) =
[
c12 (ν2 − 1) + c23 (τ2 − 1)

]
/2 . (10)

Substituting (7) into the vector equilibrium equation (1), we �nd that this equation reduces to
the scalar ordinary di�erential equation given by

d

dR
[RPrr(R)]− Pθθ(R) = 0 . (11)

Also, the boundary conditions in (2) for the disk problem take the form

r(α) = α , Prr(1) = −p r(1) , (12)

where the pressure p > 0 is constant and uniform in the deformed con�guration.
Thus, the disk problem of this work consists of �nding r : [α, 1]→ R that satis�es the ordinary

di�erential equation (11) together with (6), (8), (9), and the boundary conditions (12).

3 Phase Portraits

Phase portraits are diagrams used in the study of properties of solutions of di�erential equations.
We begin by constructing the phase portrait of the di�erential equation (11) for an arbitrary
material and then particularize it for the anisotropic St Venant-Kirchho� material by using the
stress relations (8) and (9).

Let us assume that P̂rr(τ, ·) has an inverse given by ν̌(τ, ·), such that if Prr = P̂rr(τ, ν), then
ν = ν̌(τ, Prr). We then de�ne P̌θθ(τ, Prr) , P̂θθ(τ, ν̌(τ, Prr)) and rewrite the di�erential equation
(11) as the system of equations

d

dR
[Rτ ] = ν̌(τ, Prr) ,

d

dR
[RPrr(R)] = P̌θθ(τ, Prr) . (13)
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Next, we do the change of variable R = eξ, so that ξ ∈ [logα, 0], and rewrite τ(eξ) as τ(ξ) and
Prr(e

ξ) as Prr(ξ). The system of equations (13) can then be rewritten as the system of autonomous
equations given by

dτ/dξ = ν̌(τ, Prr)− τ , dPrr/dξ = P̌θθ(τ, Prr)− Prr , (14)

where we have omitted the dependence of both τ and Prr on ξ.
To construct the phase portrait of the autonomous system (14) in the plane U , {(τ, Prr) |

τ, Prr ∈ R}, we must determine expressions for ν̌(τ, Prr) and P̌θθ(τ, Prr). From (8), we see that
ν = ν̌(τ, Prr) satis�es the cubic equation

ν3 −
[
1 + (1− τ2) c12/c11

]
ν − 2Prr/c11 = 0. (15)

The discriminant of this equation is given by

D = D(τ, Prr) , −4 a3 − 27 b2 , (16)

where a , −[1+(1−τ2) c12/c11] and b , −2Prr /c11. If D > 0, the equation (15) has three distinct
real roots; if D < 0, it has only one real root; if D = 0, it may have one or two distinct real roots.
We use D to de�ne the regions D> , {(τ, Prr) ∈ U | D > 0} and D< , {(τ, Prr) ∈ U | D < 0}.
The interface between D> and D< corresponds to the points where D = 0. Once ν = ν̌(τ, Prr) is
determined, P̌θθ(τ, Prr) is obtained from (9) by recalling its de�nition from above.

Next, we use the boundary conditions (12) to de�ne the initial curve Ci and the terminal curve

Ce as, respectively,

Ci , {(τ, Prr) ∈ U | τ = 1}, Ce , {(τ, Prr) ∈ U | Prr = −p τ} . (17)

A trajectory of the system (14) is a curve in U parameterized by ξ that satis�es (14) and is
oriented according to increasing values of ξ. The trajectory of the solution of the disk problem is
a segment of a trajectory of the system (14) that begins at the initial curve Ci, which corresponds
to ξ = log α, and ends at the terminal curve Ce, which corresponds to ξ = 0.

Singular points of the system (14) are points where both the vertical isocline V , {(τ, Prr) ∈
U | dτ/dξ = 0

(14)⇐⇒ ν̌(τ, Prr) = τ} and the horizontal isocline H , {(τ, Prr) ∈ U | dPrr/dξ =

0
(14)⇐⇒ P̌θθ(τ, Prr) = Prr} intersect. It is not di�cult to show that these points are such

that P̂θθ(τ, τ) = P̂rr(τ, τ). Therefore, from (8)-(9), we expect singular points at (τ, Prr) ∈
{(−1, 0), (0, 0), (1, 0)}.

In the remainder of this work, we use the following engineering constants: E1 = 15, E2 =
1, v12 = 0.25, v23 = 0.5, where E and v denote the Young's modulus and the Poisson ratio,
respectively, and the subscripts 1, 2, and 3 denote the radial, tangential, and axial directions,
respectively. These values of E1 and E2 multiplied by a factor of 1010 in pascal (Pa) can be used
to approximately represent the constants of a unidirectional carbon/epoxy composite, [3]. Using
the relations c11 = E1 (1− v23)/m, c12 = E2 v12/m, and c22 = E2

(
1− v2

12E2/E1

)
/ [m (1 + v23)],

where m , 1− v23 − 2 v2
12E2/E1, we obtain c11 ≈ 15.2542, c12 ≈ 0.508475, and c22 ≈ 1.35028.

In Figure 1 we plot the phase portrait associated with the system (14), which consists of
a collection of trajectories of the system together with some auxiliary lines de�ned below. As
mentioned in the previous section, at (τ, Prr) ∈ D>, which is the region delimited by the green
dashed lines, ν = ν̌(τ, Prr) may assume three possible values. Figures 1a, 1b, and 1c are phase
portraits obtained by choosing ν as the minimum, intermediate, and maximum real root of (15),
respectively, which imply that trajectories di�er only inside D>. The gray oriented lines are the
trajectories, the black vertical line is Ci, given by (17.a), the blue slightly inclined line is Ce, given
by (17.b), for p = 0.05, and the black dotted line corresponds to Prr = 0.
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(a) Minimum real root (b) Intermediate real root

(c) Maximum real root

Figure 1: Phase portraits of the system (14) where, in D>, ν̌(τ, Prr) is the (a) minimum, (b)
intermediate, and (c) maximum real root of (15).
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In addition, the red lines shown in Figures 1a, 1b, and 1c are trajectories of solutions of the
disk problem for α = 0.001 and p = 0.05. These trajectories were obtained by generating a set of
points {(τ j , P jrr)}, j = 1, 2, ..., N , where (τ1, P 1

rr) ∈ Ci,

(τ j+1, P j+1
rr ) = (τ j , P jrr) + δξj

(
dτ

dξ
,
dPrr
dξ

) ∣∣∣
(τj ,P j

rr)
, (18)

and N is such that
∑N
j=1 δξj = − logα. Thus, N is the total number of steps that are necessary

to go from the initial curve Ci to the terminal curve Ce. We have used δξj = δξ = 0.001 for
j = 1, 2, ..., N − 1, and δξN = − logα− (N − 1) δξ. The initial point (τ1, P 1

rr) was chosen in such
a way that the last point (τN , PNrr ) is close to Ce within an acceptable error.

Observe from Figures 1a and 1b that the red lines end on Ce for τ not close to 1, which means
that the outer surface of the disk undergoes a large deformation for an applied pressure that is
small, which is not physically realistic. Therefore, we discard these two solutions and concentrate
on the phase portrait of Figure 1c.

The solution represented by the red line in Figure 1c describes a state where the deformation is
small at the outer surface and, as we approach the inner surface of the disk, the absolute value of
Prr monotonically increases. Although it is not shown here, we have veri�ed that, near the outer
surface of the disk where τ is close to 1, the trajectory of solution is similar to the trajectory of
solution of the phase portrait obtained from the corresponding problem in classical linear theory
of elasticity.

We see from Figure 1c that the trajectory changes its direction abruptly at the interface between
D> and D<. This is due to the fact that, in D<, the choice of ν̌(τ, Prr) is unique, say ν

∗, and, in
D>, there are the three distinct values ν1, ν2, and ν3, such that ν1 < ν2 < ν3. Along the upper
green dashed line, we have ν∗ = ν3 and, along the lower one, we have ν∗ = ν1. In Figure 1c the
trajectories are constructed by choosing ν̌(τ, Prr) = ν3 inside D>, which yields a �nite jump in ν̌
along the lower green dashed line. From (14) and (9), it is not di�cult to show that this jump
causes a jump in both dτ/dξ and dPrr/dξ, which results in a change of direction of the trajectory.
Therefore, the solution r of the disk problem, represented by the red trajectory of Figure 1c, has
a �nite jump in its derivative r′, where we recall from above that r′(R) = ν(R) = ν̌(τ, Prr), at an
interior point of the domain B.

The above discussion indicates that solutions having trajectories entirely inside D> in Figure
1c do not have a jump in r′. In addition, for in�nitesimal deformations, the response of the
anisotropic St Venant-Kirchho� material reduces to that of the classical linear theory of elasticity,
in the context of which, a problem analogous to the disk problem would have a continuous r′.
Therefore, we expect that there is a value of pressure, p̄ > 0, below which r′ is continuous.

To determine the value of p̄, �rst, observe from Figure 1c that, along the initial curve Ci, starting
points above and below the point A belong to trajectories of, respectively, smooth and non-smooth
solutions. Thus, the trajectory of solution starting at point A corresponds to the pressure p̄.

Next, at the pointA, the discriminant de�ned by (16) vanishes, yielding the equationD(1, Prr) =
0, from which we �nd Prr ≈ −2.93568. To determine p̄ for a given α, we use (18) with (τ1, P 1

rr) =
(1,−2.93568) and construct the trajectory of the solution corresponding to p̄. In Table 1, we show
estimates of p̄ calculated with di�erent values of α and δξ. We see that, for a given α, p̄ seems to
converge to a limit value as δξ decreases. In addition, for δξ = 10−4, which corresponds to our most
accurate estimates of p̄, and α < 10−3, each time we divide α by 10, p̄ is divided by approximately
5; for instance, 5.38e-04/2.71e-03 = 5.04. This result indicates that p̄ → 0 as α → 0. Therefore,
if the disk is solid, that is, if α = 0, our results indicate that the deformation �eld has a �nite
jump in its derivative r′ for any value of compressive pressure p > 0. We do not treat the case
α = 0 directly because, in this case, − logα =∞ and we cannot use (18) to obtain trajectories of
solutions.
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Table 1: Estimates of p̄ for di�erent values of δξ and α.

δξ
α 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

10−1 3.95e-01 6.40e-02 1.17e-02 2.17e-03 4.05e-04 7.58e-05 1.42e-05 2.65e-06

10−2 4.22e-01 7.11e-02 1.36e-02 2.66e-03 5.23e-04 1.03e-04 2.04e-05 4.02e-06

10−3 4.24e-01 7.18e-02 1.38e-02 2.71e-03 5.36e-04 1.06e-04 2.11e-05 4.18e-06

10−4 4.25e-01 7.19e-02 1.38e-02 2.71e-03 5.38e-04 1.07e-04 2.11e-05 4.20e-06

4 Conclusions

We have considered the problem of a nonlinearly elastic annular disk in equilibrium without
body force having uniform thickness and being �xed on its inner surface of radiusRi and compressed
by a constant and uniform pressure p > 0 on its outer surface of radius Re. The disk is made of a
transversely isotropic St Venant-Kirchho� material with radial symmetry axis. We have used the
phase-plane method to show that the solution of this problem has a �nite jump in its derivative
for p > p̄. Thus, for a given internal radius Ri > 0, this result yields the range of validity of the
in�nitesimal theory, since this theory does not admit non-smooth solutions in the interior of the
body. This work is of interest in devising numerical strategies for the investigation of materials
that may undergo deformed states with multiple phases. However, to use this method, we must
rewrite the di�erential equation of the problem as a system of autonomous equations, which is not
always possible.
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