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Abstract. In this paper, the asymptotic behavior of nonlinear systems is studied by means of
a T-S fuzzy system, which exactly represents the nonlinear system in question, and the extended
Invariance Principle. An important feature of the proposed approach is the exhibition of conditions
to estimate the attracting invariant set in terms of LMIs.
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1 Introduction

The Takagi-Sugeno (T-S) fuzzy modeling approach can be used to represent a large class of
nonlinear systems by means of a sum of averaged linear models [8]. This modeling approach
facilitates the analysis and control design of nonlinear systems [2, 5, 11] by creating a middle ground
between the linear and nonlinear dynamics [6]. The potential advantages of this approach are: (i)
stability can be analyzed using linear matrix inequalities (LMIs) in a Lyapunov formulation, which
can be efficiently solved by convex programming techniques, and (ii) a fuzzy dependent Lyapunov
function is usually less conservative than a quadratic one [3]. Following this approach, several
formulations have been developed to obtain less conservative conditions for stability, among which,
fuzzy Lyapunov functions (FLFs) and polynomial Lyapunov functions (PLFs) have attracted a lot
of attention [4].

The Invariance Principle and the Extension of LaSalle’s Invariance Principle [1] provide informa-
tion about the asymptotic behavior of trajectories with conditions that are usually less restrictive
than Lyapunov’s method, in the sense that it allows for the derivative of the candidate Lyapunov-
like function to be positive in a bounded region. This result has been applied to study stability and
the asymptotic behavior of many classes of nonlinear systems, including the a class of switched T-S
fuzzy systems [12] with promising results. The authors, however have not found similar application
for non-switched T-S systems.

In this work, we propose the application of the extended Invariance Principle to study the
asymptotic behavior of nonlinear systems by using a T-S fuzzy system model that exactly represents
the nonlinear system in question. Particularly, conditions, in the form of LMIs, are developed to
ensure the existence of a bounded positive invariant set that attracts trajectories of the nonlinear
system.
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2 Preliminaries

Let us assume that the following nonlinear system:

ẋ = f(x), (1)

where f : Rn → Rn is a complete C1 vector field, can be exactly represented [8], [10], [7] by the
TS-fuzzy model: [9]

ẋ =
∑
i∈R

hiAix, R = {1, ..., r} (2)

in the following set of the state space

Z = {x ∈ Rn : |xν | ≤ x̄ν ,∀ν ∈ N} (3)

where R is the set of indexes representing the r fuzzy rules, N = {1, ..., n}, and Ai ∈ Rn×n is a
time invariant matrix. The topological boundary of Z is the set ∂Z =

⋃
ν∈N Zν , where Zν = {x ∈

Z : xν = x̄ν}
⋃
{x ∈ Z : xν = −x̄ν} ∀ν ∈ N . The membership functions hi : Rn −→ R, ∀i ∈ R

are C1 and have the following convex properties:∑
i∈R

hi(x) = 1, hi(x) ≥ 0 ∀i ∈ R, ∀x ∈ Z. (4)

Our objective is to study the asymptotic behavior of (1) inside Z by studying the asymptotic
behavior of (2) using the Extension of LaSalle’s Invariance Principle [1].

2.1 Candidate Lyapunov-type Function

We define a candidate auxiliary scalar C1 function V : Rn −→ R:

V (x) = x′
∑
k∈G

hk(x)Pkx, (5)

with Pk = P ′
k ∈ Rn×n, ∀k ∈ G ⊂ R. Set G is a subset of R, which can be conveniently chosen

to include only a subset of the membership functions hk(x) in the candidate function. We will
impose characteristics on matrices Pk with k ∈ G such that we can use V (x) to conclude about
asymptotic behavior of (1). Taking the derivative of (5) yields:

V̇ (x) = ẋ′
∑
k∈G

hkPkx+ x′
∑
k∈G

ḣkPkx+ x′
∑
k∈G

hkPkẋ. (6)

Substituting (2) into (6) results in:

V̇ (x) = x′
∑
j∈R

hjA
′
j

∑
k∈G

hkPkx+ x′
∑
k∈G

ḣkPkx+ x′
∑
k∈G

hkPk

∑
j∈R

hjAjx. (7)

Finally, rewriting the derivative as a quadratic form, we obtain:

V̇ (x) = x′[∑
j∈R

∑
k∈G

hkhj(A
′
jPk + PkAj) +

∑
k∈G

ḣkPk

]
x. (8)
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2.2 Invariant Sets
Let us define the L−level set:

ΩL = {x ∈ Rn : V (x) < L}. (9)

We will first show that it is always possible to choose L such that ΩL ⊂ Z. This is important
because (2) only exactly represents (1) inside Z and also because this guarantees that ΩL is
bounded. With that purpose, we know, for every Pk, k ∈ G and x ∈ Rn, that:

xTPkx ≥ λmin(Pk)||x||2. (10)

Multiplying (10) by hk and summing over k yields:∑
k∈G

hkx
TPkx = V (x) ≥

∑
k∈G

hkλmin(Pk)||x||2. (11)

This inequality is valid ∀x ∈ Rn, and, in particular, is valid on ∂Z, which is a compact set. This
implies that V assumes a minimum value on ∂Z and the following is true:

V (y) ≥ min
x∈∂Z

∑
k∈G

hkλmin(Pk)||x||2, ∀y ∈ ∂Z. (12)

The minimum of the sum is greater than the sum of the minimums, so

min
x∈∂Z

∑
k∈G

hkλmin(Pk)||x||2 ≥
∑
k∈G

min
x∈∂Z

λmin(Pk)hk||x||2. (13)

If we restrict the norm of x to its smallest value at the border of Z, we can also write that V is
bounded below by b, where

b =
∑
k∈G

min
x∈∂Z

λmin(Pk)hk min
ν∈N

x̄2
ν . (14)

Consequently, if we choose L < b, we guarantee that ΩL ⊂ Z.

Z

V (∂Z) ≥ b

V (ΩL) < L < b

Figure 1: Diagram showing that ΩL ⊂ Z

Now, let C be the set with positive derivative of the candidate function V :

C = {x ∈ ΩL : V̇ (x) > 0} (15)

According to (8),

C = {x ∈ ΩL : x′[∑
j∈R

∑
k∈G

hkhj(A
′
jPk + PkAj) +

∑
k∈G

ḣkPk

]
x > 0} (16)
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3 Conditions for the existence of Invariant Sets

In this section, we will obtain LMI conditions for the existence of invariant sets for system
(1) exploring the Extended Invariance Principle and the formulation (2). Initially, we analyze the
derivative V̇ of the candidate function V in order to establish a bounded region in which this
derivative assumes positive values. With that in mind, initially, we establish conditions to ensure
the first term of the expression in (16) is negative definite, that is

x′
∑
k∈G

∑
j∈R

hkhj

(
A′

jPk + PkAj

)
x < 0. (17)

To guarantee this, we add and subtract the following canceling terms to the previous inequality:

x′
∑
k∈G

∑
j∈R

[
hkhj(A

′
jPk + PkAj) + hkhj(LkAj +A′

jL
′
k)

− hkhj(A
′
jL

′
k + LkAj) +A′

jhkhj(R
′
k +Rk)Aj

−A′
jhkhj(Rk +R′

k)Aj

]
x < 0, (18)

where Lk, Rk ∈ Rn×n. Rearranging the terms of the previous inequality and writing it in matrix
form, we have

∑
j∈R

hj

[
x′ x′A′

j

]∑
k∈G

hk

[
LkAj +A′

jL
′
k ∗

Pk − L′
k +RkAj −Rk −R′

k

] [
x

Ajx

]
< 0. (19)

Let us define:

Υkj =

[
LkAj +A′

jL
′
k ∗

Pk − L′
k +RkAj −Rk −R′

k

]
, (20)

so (19) can be compactly written as:

∑
j∈R

hj

[
x′ x′A′

j

]∑
k∈G

hkΥkj

[
x

Ajx

]
< 0. (21)

For (21) to hold, it is sufficient that

Υkj < 0 ∀k ∈ G, j ∈ R. (22)

If we impose (22), then the second term of the expression in (16) will be responsible for gener-
ating regions with positive derivative of V . More precisely, if we define:

D = {x ∈ ΩL : x′
∑
k∈G

ḣkPkx > 0}, (23)

then C ⊂ D. If in addition, we assume that

sup
x∈D

V (x) = l < L, (24)

then, we have D ⊂ Ωl ⊂ ΩL ⊂ Ωb ⊂ Z.
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3.1 Main Results

In this section, we propose a theorem establishing conditions to ensure the existence of a
bounded attracting set for system (1) by exploring the following extended invariance principle.

Lemma 3.1. (Extended Invariance Principle) Consider system (1) and let V : Rn → R be a C1

function and c : Rn → R be a continuous function, such that

−V̇ (x) ≥ c(x), ∀x ∈ Rn. (25)

Let L ∈ R be a constant such that ΩL = {x ∈ Rn : V (x) < L} is bounded. Let A := {x ∈
ΩL : c(x) < 0}, suppose that supx∈A V (x) = l < L and define Ω̄l = {x ∈ Rn : V (x) ≤ l} and
E := {x ∈ ΩL : c(x) = 0}

⋃
Ω̄l. Let B be the largest invariant set of the nonlinear system (1)

contained in E. Then every solution of (1) starting in ΩL converges to the invariant set B, as
t → ∞. Moreover, if x0 ∈ Ω̄l then φ(t, x0) ∈ Ω̄l for every t ≤ 0 and φ(t, x0) tends to the largest
invariant set of (1) contained in Ω̄l.

Proof. See [1].

Now, we are in a position to enunciate the main result of this paper:

Theorem 3.1. Consider the nonlinear system (1), which can be exactly represented by the T-
S Fuzzy system (2) inside the bounded set Z. Let L such that ΩL is bounded and ΩL ⊂ Z.
Let D be defined as (23) and assume (24). If there exist Pk, Lk, Rk such that (22) is satisfied,
then every solution of (1) starting in ΩL, converges to the largest invariant set of (1) inside
E := {x ∈ ΩL : V̇ (x) = 0}

⋃
Ωl.

Proof. Choosing L < b as defined in (14), it is guaranteed that ΩL ⊂ Z and, therefore, is bounded.
Choosing also, V (x) as in (5) and c(x) = −x′ ∑

k∈G ḣkPkx, we can directly apply Lemma 3.1. If
(22) is satisfied, then the only possibility for V̇ (x) > 0 inside ΩL is D ⊂ Ωl. The result follows.

Example 3.1. Consider the following nonlinear system:

ẋ =

[
−10x1 +

30
25 (x

2
1 + x2

2 − 25)x2

−20x2

]
. (26)

Using the sector nonlinearity approach [8], we obtain a T-S Fuzzy Model that exactly represents
(26) in the set Z = {x ∈ Rn : x1 ∈ [−5, 5], x2 ∈ [−5, 5]}:

ẋ =
∑
i∈R

hiAix, R = {1, 2} (27)

A1 =

[
−10 30
0 −20

]
A2 =

[
−10 −30
0 −20

]
(28)

h1(x) =
x2
1 + x2

2

50
, h2(x) = 1− x2

1 + x2
2

50
(29)

Solving the LMIs defined in (22) using convex programming techniques, the following results
were obtained
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Figure 2: Sets ΩL,Ωl and D

P1 =

[
0.0289 −0.0000
−0.0000 10.0652

]
L1 =

[
0.0194 −0.0000
−0.0000 0.0652

]
R1 =

[
0.0030 −0.0000
−0.0000 0.5000

]
(30)

Using G = {1}, b = 0.35 and l = 0.2. The feasibility of the LMI conditions guarantees that the
solutions of the nonlinear system (26) starting inside ΩL, with L < 0.35 converge to the largest
invariant set inside E := {x ∈ ΩL : V̇ (x) = 0}

⋃
Ωl. Figure 2 illustrates the relevant sets. The

outer red line represents ΩL, the inner red line represents Ωl and the blue dots represent set D as
defined in (23).

4 Final Considerations
In this work, we proposed a new method for analyzing the asymptotic behavior of nonlinear

systems using a T-S fuzzy model and the extended Invariance Principle. In this result, we allowed
V̇ (x) to assume positive values in a bounded set and proposed methods to obtain estimates of
the invariant sets by means of LMIs. In future results, we aim to improve the estimates of the
invariant sets and also apply this result to more complex systems, that is, with a higher number
of nonlinearities.

5 Acknowledgements
This study was financed by the Conselho Nacional de Desenvolvimento Científico e Tecnológico

(CNPq), process 312040/2021-0 and the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES), finance code 001.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 10, n. 1, 2023.

DOI: 10.5540/03.2023.010.01.0063 010063-6 © 2023 SBMAC

http://dx.doi.org/10.5540/03.2023.010.01.0063


7

References
[1] Luís Fernando Costa Alberto. “O Princípio de Invariância de LaSalle estendido aplicado ao

estudo de coerência de geradores e à análise de estabilidade transitória multi-’swing’.” PhD
thesis. São Carlos: Universidade de São Paulo, Apr. 2000. doi: 10.11606/T.18.2000.tde-
01102001-175455.

[2] Anna V. Blumel, Antonios Tsourdos, and Brian A. White. “Flight Control Design For A
STT Missile: A Fuzzy LPV Approach”. In: IFAC Proceedings Volumes 34.15 (Sept.
2001), pp. 455–460. issn: 14746670. doi: 10.1016/S1474-6670(17)40769-5.

[3] Flávio A. Faria, Geraldo N. Silva, and Vilma A. Oliveira. “Reducing the conservatism of
LMI-based stabilisation conditions for TS fuzzy systems using fuzzy Lyapunov functions”. In:
International Journal of Systems Science 44.10 (2013), pp. 1956–1969. issn: 00207721.
doi: 10.1080/00207721.2012.670307.

[4] Flávio A. Faria, Michele C. Valentino, and Vilma A. Oliveira. “A fuzzy Lyapunov function
approach for stabilization and H control of switched TS fuzzy systems”. In: Applied Math-
ematical Modelling 38.19-20 (2014), pp. 4817–4834. issn: 0307904X. doi: 10.1016/j.
apm.2014.03.034.

[5] Xiaorong Huang et al. “A survey on the application of fuzzy systems for underactuated sys-
tems”. In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal
of Systems and Control Engineering 233.3 (Mar. 2019), pp. 217–244. issn: 0959-6518.
doi: 10.1177/0959651818791027.

[6] Javad Mohammadpour and Carsten W. Schrer. Control of Linear Parameter Varying
Systems with Applications. Ed. by Javad Mohammadpour and Carsten W. Scherer.
Boston, MA: Springer US, 2012. isbn: 978-1-4614-1832-0. doi: 10.1007/978-1-4614-1833-
7.

[7] Damiano Rotondo et al. “Automated generation and comparison of Takagi-Sugeno and
polytopic quasi-LPV models”. In: Fuzzy Sets and Systems 277 (2015), pp. 44–64. issn:
01650114. doi: 10.1016/j.fss.2015.02.002.

[8] Kazuo Tanaka and Hua O. Wang. Fuzzy Control Systems Design and Analysis. 2001.
isbn: 0471323241. doi: 10.1002/0471224596.

[9] Tadanari Taniguchi et al. “Model construction, rule reduction, and robust compensation
for generalized form of Takagi-Sugeno fuzzy systems”. In: IEEE Transactions on Fuzzy
Systems 9.4 (2001), pp. 525–538. issn: 10636706. doi: 10.1109/91.940966.

[10] Shun-Hung Tsai and Yu-Wen Chen. “A novel identification method for Takagi–Sugeno fuzzy
model”. In: Fuzzy Sets and Systems 338 (May 2018), pp. 117–135. issn: 01650114. doi:
10.1016/j.fss.2017.10.012.

[11] A. Tsourdos et al. “Control design for a mobile robot: a fuzzy LPV approach”. In: Proceed-
ings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003. IEEE,
2003, pp. 552–557. isbn: 0-7803-7729-X. doi: 10.1109/CCA.2003.1223496.

[12] Michele C. Valentino et al. “Ultimate boundedness sufficient conditions for nonlinear systems
using TS fuzzy modelling”. In: Fuzzy Sets and Systems 361 (2019), pp. 88–100. issn:
01650114. doi: 10.1016/j.fss.2018.03.010.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 10, n. 1, 2023.

DOI: 10.5540/03.2023.010.01.0063 010063-7 © 2023 SBMAC

http://dx.doi.org/10.5540/03.2023.010.01.0063

