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Abstract. This work presents the formulation, verification, and application of an OpenFOAM-
based multiphase solver for physical systems with moving and stationary phases. The latter is used
to model porous media, allowing for the simulation of multiphase flow processes applied to many
areas of science and engineering. The model considers an implicit coupled solution of the phase-
fraction equations for an arbitrary number of phases in the system, providing better approximations
when compared to the standard segregated solution. We present verification tests simulated in
scenarios with different numbers of moving phases, along with an application case.
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1 Introduction

Understanding the multiphase flow processes that occur in porous media, such as oil and gas
reservoirs, is essential for managing these resources. Thus, the development of numerical tools
to simulate productivity is a topic of interest to academia and industry [1]. In this context,
open-source simulators are especially attractive due to the accessibility they offer to the scientific
community. Here, we consider the OpenFOAM platform for CFD (Computational Fluid Dynam-
ics) simulations. OpenFOAM is a powerful CFD software that employs the Finite Volume Method
(FVM) to discretize and solve the governing equations of fluid flow and related phenomena. It
offers a versatile platform in C++ for simulating and analyzing complex fluid dynamics prob-
lems, allowing users to accurately model and understand various physical phenomena through the
integration of advanced numerical methods and customizable solvers [9].

There are several solvers for multiphase flow problems available in the OpenFOAM frame-
work. One example is multiphaseEulerFoam [10], a solver based on the Eulerian multi-fluid
model which considers averaged conservation equations. Another solver to be highlighted is
porousMultiphaseFoam [4], a dedicated toolbox for incompressible two-phase flows in porous
media. Furthermore, we recently developed upstreamFoam [6], a solver that combines the Eu-
lerian multi-fluid formulation for a system of an arbitrary number of phase fractions for flows in
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porous media. It considers physical systems containing moving and stationary phases, and has a
distinguished feature of modeling the porous medium as a stationary phase.

In this work, we add to the upstreamFoam solver the implementation of an implicit coupled
solution for phase fraction equations based on the formulation proposed by Keser et al. [5]. In
contrast to the explicit approach, we obtain a better approximation for the phase fractions due to
their simultaneous solution, resulting in a more flexible time step size choice, which contributes to
the reduction of the computational cost.

The following section presents the mathematical and numerical formulations adopted. Verifi-
cation tests and an application case are presented in Section 3, followed by Section 4 with final
discussions and conclusions.

2 Mathematical and numerical formulations
The primary objective of this work is to develop an application in OpenFOAM that effectively

solves multiphase physical systems by the coupling balance equations for phase fractions. The
specific focus is on using this solver for porous media flows within the oil and gas industry. The
mathematical formulation is based on the Euler-Euler multi-fluid approach, with a particular
emphasis on incorporating a specialized treatment for the porous media, treating it as a stationary
phase.

In the Euler-Euler formulation, the interaction effects between phases are accounted for in a
complete momentum balance equation for each phase, that considers viscous and turbulent stress,
interfacial forces, and surface tension [7, 8]. For the purpose of this work, we do not consider such
effects and use a simplified version of the referred equation that reduces to the standard Darcy
equation:

αiUi = −kr,i
µi

K · (∇p− ρig), (1)

where the index i represents one phase with fraction αi, velocity Ui, relative permeability (kr)
in phase i, kr,i, viscosity µi, and density ρi. The tensor K is the absolute permeability, p is the
pressure of the system, and g is the gravity acceleration. The phase fractions are related to the
saturation of classic approaches by

Si =
αi

αv
, (2)

being αv the void fraction or porosity, that satisfies

αv = 1−
Ns∑
i=1

αi, (3)

where Ns is the number of stationary phases. Stationary and moving phases are related by

N∑
i=1

αi = 1, (4)

where N = Ns +Nm denotes the sum of the number of stationary and moving phases.
Considering a system of incompressible phases, the mass balance equation for each phase is:

∂αi

∂t
+∇ · (αiUi) = 0, (5)

while the mass conservation of the system is:

∇ · (Um) = 0, (6)
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where Um is the mixture velocity which, for N phases, is given by

Um =

N∑
i=1

αiUi. (7)

The convective term of Eq. (5) can be expanded and expressed in terms of the mixture velocity,
resulting in the following expression:

∂αi

∂t
+∇ · (αiUm) +∇ ·

αi

N∑
j=1,j ̸=i

αj(Ui −Uj)

 = 0. (8)

In summary, the model for incompressible multiphase flows in porous media consists of a set
of partial differential equations given by the Darcy equation, Eq. (1), the total mass conservation,
Eq. (6), and the phase fraction equation, Eq. (8).

2.1 Numerical procedure
To solve the non-linear system for pressure, phase velocities, and phase fractions, we use the

segregated IMplicit Pressure Explicit Saturation (IMPES) scheme [3], solving pressure and velocity
separately from the phase fractions.

Using the total mass conservation, Eq. (6), after summing Darcy’s law of each phase, we obtain
the pressure equation:

∇ ·

(
N∑
i=1

(
kr,i
µi

K · (∇p− ρig)

))
= 0, (9)

that is solved by a Pressure IMplicit splitting of operator for Pressure-Linked Equations (PIMPLE)
method in OpenFOAM. To approximate the phase fraction equation, Eq. (8), we consider an
implicitly coupled procedure presented by Keser et al. [5], and described below.

2.2 Linearization by Keser
The coupled implicit formulation consists of a linear system of equations to describe the rela-

tionship between the phase fractions. In this context, some terms of Eq. (8) are non-linear so, it
is necessary to linearize them to construct the linear system. To explain the linearization method-
ology proposed by Keser, we consider the phase continuity equation, Eq. (8), for a three-phase
system:

∂αi

∂t
+∇ · (αiUm) +∇ ·

αi

3∑
j=1,j ̸=i

αj(Ui −Uj)

 = 0. (10)

When i = 1, the non-linear term in the balance equation, Eq. (10), is given by:

α1

3∑
j=2

αj(U1 −Uj) = α1α2(U1 −U2) + α1α3(U1 −U3), (11)

where U1 −U2 is called relative velocity and represented as Ur,1,2. Note that the phase velocities
do not depend implicitly on the phase fractions, and hence the linearization of the term containing
relative velocities around the solution from the previous time-step/iteration reads:

Ur,1,2α
n
1α

n
2 ≈ Ur,1,2α

o
1α

o
2 +

(
∂(Ur,1,2α1α2)

∂α1

)o

(αn
1 − αo

1) +

(
∂(Ur,1,2α1α2)

∂α2

)o

(αn
2 − αo

2) (12)

≈ Ur,1,2α
n
1α

o
2 +Ur,1,2α

o
1α

n
2 +Ur,1,2α

o
1α

o
2, (13)
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where superscripts n and o denote the new and old time step/iteration.
Following this approach, the non-linear term in the phase fraction equation for a general mul-

tiphase system can be written as

αi

N∑
j=1,j ̸=i

αj(Ui−Uj) = αn
i

N∑
j=1,j ̸=i

αo
j (Ui −Uj)︸ ︷︷ ︸

implicit

−αo
i

N∑
j=1,j ̸=i

αo
j (Ui −Uj)︸ ︷︷ ︸

explicit

+αo
i

N∑
j=1,j ̸=i

αn
j (Ui −Uj)︸ ︷︷ ︸

cross-coupling

.

(14)
It is possible to observe that the method proposed by Keser consists of assembling the linear system
by dividing the non-linear term into three components: explicit, implicit, and cross-coupling.

3 Numerical Results

In this section, we first test our model in a verification study, then we present an application case.
Numerical experiments consider the GAMG (generalized geometric algebraic multigrid) and DIC
(diagonal incomplete Cholesky) smoother in a stabilized PCG (preconditioned conjugate gradient)
algorithm with a tolerance of 10−8 for the pressure system. The system for phase fractions, in
turn, uses the OpenFOAM diagonal solver. Concerning the temporal approximation, we use an
explicit Euler method with adjustable time step such that

∆tmax =
Cmax

C
, (15)

where C is the Courant number restriction, and Cmax is user defined.

3.1 Heterogeneous Buckley-Leverett

To verify the implemented model, we solve an oil-water flow in a one-dimensional heteroge-
neous porous medium and compare the results obtained with the Buckley-Leverett semi-analytical
solution [11]. We demonstrate the solver capacity to simulate different numbers of moving phases
considering two scenarios: one with two moving phases, and the other with four moving phases.
Then, we present a test where the coupled implicit solution is compared to an explicit one.

The domain Ω = [0, 0.065] is considered fully saturated with oil, and water is injected from
x = 0m at a constant mass flow rate of 1.67× 10−5 kg/s, producing oil and water at x = 0.065m,
where a fixed pressure of 0.1 MPa is maintained. The void fraction (or porosity) is αv = 0.3 if
0 ≤ x ≤ 0.0325 and αv = 0.15 if 0.0325 < x ≤ 0.065, while the absolute permeability is K =
101.32mD. The properties of water (denoted by w) and oil (denoted by o) are: ρw = 1000 kg/m3,
µw = 0.001Pa · s, ρo = 800 kg/m3, and µo = 0.002Pa · s. In this study, gravity is negligible.

We present in Fig. 1 the saturation profiles after 2000 s considering a computational mesh
with 500 cells, for which it has been used the Brooks and Corey relative permeability model with
kr,i(max) = 1 for both phases [2]. In the referred experiments, we vary the Brooks and Corey
exponent n and the value of Cmax.

In Fig. 1a, we set n = 1 and Cmax = 0.5 and consider two scenarios: a two-phase flow case,
and a four-phase flow case (three separated oil phases with the same fluid properties and equally
distributed in the domain). We note that the approximations of both water saturations are close
to the analytical solution. Therefore, for the same flow condition, we obtain accurate solutions
independently of the number of phases. Additionally, we present the oil saturation curves to
confirm that the three oil saturations are equal.
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In Fig. 1b, we set n = 2 and vary the value of Cmax to compare the solution provided by the
coupled implicit solver with the explicit approximation for the phase fractions by using the Multi-
dimensional Universal Limiter with Explicit Solution (MULES) available in OpenFOAM. Firstly,
we observe that the approximations provided by both methodologies are equivalent and accurate
for Cmax = 0.5. For Cmax = 0.82, the MULES approximation presented instabilities, while the
coupled solution proved precise. Instabilities in the MULES solution arise due to its explicit na-
ture, with stability typically limited to Cmax = 0.8. This behavior has been consistently observed
in simulations conducted using the original version of the Euler-Euler application in OpenFOAM.
For Cmax = 2.0, the coupled solution produced a satisfactory result, and presented subtle instabil-
ities for Cmax = 4.0, when compared to the analytical solution. This study demonstrates a great
advantage in terms of the time step size for the coupled model when compared to the MULES
solver. Even in a simplified problem, it is possible to increase almost five times the time step.

(a) Two-phase and four-phase flow scenarios. (b) Water saturation by coupled and MULES.

Figure 1: Saturation profiles for the heterogeneous Buckley-Leverett case.

3.2 Application case

In this experiment, we present an application case in a 3D heterogeneous domain to demonstrate
the capacity of the solver to handle more complex problems. The domain considered has dimensions
of 0.04m×0.1m×0.04m and 40× 100× 40 computational cells. It is fully saturated with oil, and
water is injected from y = 0m at a constant mass flow rate of 8.32× 10−5 kg/s, producing oil and
water at y = 0.04m, where a fixed pressure of 10 MPa is maintained.

Porosity and absolute permeability fields have been generated randomly, see the illustration in
Fig 2. We use the Brooks and Corey relative permeability model with kr,i(max) = 1 and n = 2 for
both phases, Cmax = 2.0, the same properties of oil and water considered in the previous study,
and gravity is neglected.

We present in Fig. 3 the water saturation at times 200 s, 700 s, and 1200 s, where we observe a
behavior compatible with the physics of the flow. We remark that in this configuration fingering in-
stabilities appear at the saturation front and evolve in time, characterizing a complex phenomenon
due to the viscosity ratio between the fluids.
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Finally, we present in Fig 4 a history of the pressure gradient during the simulation, where it is
possible to observe a pressure drop around t = 1243 s, that corresponds to the breakthrough time
(when the water arrives at the outlet). This characterization can be performed by analyzing the
time at which the first water flow value occurs at the domain outlet. Note that the breakthrough
time estimated is in agreement with the saturation profiles presented in Fig. 3. We remark that
the breakthrough time can be important data for decision-making in reservoir engineering.

Figure 2: Porosity and absolute permeability for the 3D application case.

Figure 3: Water saturation profiles of the 3D application case.

Figure 4: Pressure drop during the simulation.
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4 Conclusions
In this work, an OpenFOAM solver with an implicit coupled solution for phase fractions has

been developed for multiphase systems where the stationary phases are used to model porous
media. Verification tests have been performed in a one-dimensional problem with an analytical
solution, obtaining accurate results for the approximation of the saturation front. We showed that
the coupled methodology for the solution of phase fractions allows for the use of larger time steps
when compared to MULES, being a promising alternative to reduce computational costs. Finally,
an application case in a 3D heterogeneous porous medium has been presented, illustrating the
ability of the model to simulate more complex problems.
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