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Abstract. Neutral particle transport problems are fundamental in the modeling of energy transfer
by radiation (photons) and by neutrons with many important applications. In this work, the novel
ANN-MoC method for solving unidimensional neutral particle transport problems is presented.
Following the Method of Discrete Ordinates (DOM) and decoupling with a Source Iteration (SI)
scheme, the proposed method applies Artificial Neural Networks (ANNs) together with the Method
of Characteristics (MoC) to solve the transport problem. Once the SI scheme converges, the method
gives an ANN that estimates the average flux of particles at any points in the computational domain.
Details of the proposed method are given and results for two test cases are discussed. The achieve
results show the potential of this novel approach for solving neutral particle transport problems.
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1 Introduction
Photon and neutron transport are important examples of neutral particles transport phenom-

ena. The first appears in many applications, mainly in that involving energy transport via radiative
transfer [12]. Practical applications includes the design of industrial furnaces, combustion cham-
bers, or forming processes such as glass and ceramics manufacturing [3, 9, 17]. Other applications
are found in the fields of astrophysics [11, 13], medical optics [1, 6, 15, 18], developing of micro-
electro-mechanical systems [8]. Neutron transport also has applications in medicine and clearly in
nuclear energy generation [10, 14].

In this work, the neutral particle transport is assumed to be modeled in a unidimensional space
domain D = [a, b] as it follows

∀µ ∈ [−1, 1] : µ · ∂

∂x
I(x, µ) + σtI =

σs

2

∫ 1

−1

I(x, µ′) dµ′ + q(x, µ),∀x ∈ D, (1a)

∀µ > 0 : I(a, µ) = Ia, (1b)
∀µ < 0 : I(b, µ) = Ib, (1c)

where I(x, µ) is the angular flux of particles at the point x ∈ D = [a, b] and in the direction
µ ∈ [−1, 1], σt is the total absorption coefficient and σs the scattering coefficient, q(x, µ), Ia and
Ib are, respectively, the sources in D and on its boundary. The average flux of particles is given by

Ψ(x) :=
1

2

∫ 1

−1

I(x, µ) dµ. (2)

Many solution approaches are available to problem (1) (see, for instance, [10, 12]). One of the
most applied is the so called Discrete Ordinates Method (DOM, [12]). By considering a numerical
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quadrature {µi, wi}Ni=1, the problem (1) is approximated by a system of equations only for the
discrete directions µi, i = 1, 2, . . . , N . The equations can be further decoupled by using the Source
Iteration (SI) strategy, where the system is iteratively solved for approximations of Ψ(x) ≈ Ψ(j)(x),
j = 1, 2, 3, . . ., until a given stop criteria. At each SI iterate, one has a decoupled system of N
linear first order partial differential equations, which can be solved by the Method of Characteristics
(MoC, [2]). To do so, one will need to compute an integral depending on the Ψ approximation.

In this work, we present a novel method to solve (1), it integrates and Artificial Neural Network
(ANN, [4, 5]) into the DOM-MoC approach. The main idea is to train an ANN to estimate the
average flux Ψ(j) at each SI iterate. It is a meshless method, in the sense that it does not rely
on a fixed domain mesh. After convergence, the method gives an ANN that estimate Ψ(x) for all
x ∈ D.

2 The ANN-MoC Method
Following the Discrete Ordinates Method (DOM), we assume a numerical quadrature {µi, wi}Ni=1,

and the Source Iteration (SI) approximation of problem (1) is given as follows

i = 1, . . . , N : µi ·
∂

∂x
I(j)(x, µi) + σtI

(j)
i (x) = σsΨ

(j−1)(x) + q(x, µi),∀x ∈ D, (3a)

µi > 0 : I
(j)
i (a) = Ia, (3b)

µi < 0 : I
(j)
i (b) = Ib, (3c)

where I
(j)
i ≈ I(j)(x, µi), l = 1, 2, . . . , L, and Ψ(0)(x) is a given initial approximation for Ψ(x).

Then, the j-th approximation of the average flux is given by

Ψ(j)(x) =
1

2

N∑
i=1

wiI
(j)
i (x) (4)

Now we use the Method of Characteristics (MoC) by applying the change of variables x(s) =
x0 + s · µi. Then, for each i = 1, . . . , N , equation (3a) can be rewritten as follows

d

ds
I
(j)
i (s) + σtI

(j)
i (s) = σsΨ

(j−1)(s) + q(s, µi), (5)

where I
(j)
i (s) = I

(j)
i (x(s)), and analogous for the other term. An integrating factor than gives us

I
(j)
i (s) = I

(j)
i (0)e−

∫ s
0
σt ds

′
+

∫ s

0

[
Ψ(j)(s′) + q(s′, µi)

]
e−

∫ s
s′ σt ds

′′
ds′ (6)

The computation of the integral term involving Ψ(j)(s) is an issue, since it usually requires the
evaluation of Ψ(j)(s) at several points s ∈ (0, s), which can be a large interval depending on the
direction µi.

The idea of the proposed ANN-MoC method, is to train an Artificial Neural Network (ANN)
to estimate Ψ(j) at each source iteration. In the following, we simplify the notation by omitting
the super-index (j).

2.1 ANN Average Flux Estimation
The ANN is assumed to be a Multilayer Perceptron (MLP, [5]) that has x ∈ D as input and

the estimate Ψ̃(x) as output. It is denoted by

Ψ̃(x) = N
(
x; {(W (l), bbb(l), f (l))}nl

l=1

)
, (7)
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where (W (l), bbb(l), f (l)) denotes the triple of the weights W (l) =
[
w

(l)
i,j

]n(l−1),n(l)

i,j=1
, the bias bbb(l) =(

b
(l)
i

)n(l)

i=1
and the activation function f (l) in the l-th layer of the network. The number of neurons

(units) at each layer is denoted by n(l), l = 1, 2, . . . , nl. The MLP forwardly computes

aaa(l) = f (l)
(
W (l)aaa(l−1) + bbb(l)

)
, (8)

where aaa(0) = x and Ψ̃(x) = aaa(nl).
Given a fixed structure (number of layers nl, number of units n(l) per layer and the activation

functions), the training of the ANN consists in solving the following optimization problem

min
{(W (l),bbb(l))}nl

l=1

1

ns

ns∑
m=1

(
Ψ̃(m) −Ψ(m)

)2

(9)

for a given training set {x(m), Ψ̃
(
x(m)

)
}ns
m=1, where ns is the number of samples.

2.2 The ANN-MoC Algorithm
The proposed ANN-MoC method computes successive approximations of the average flux Ψ(x)

for all points in the domain D. It starts from the ANN (7) trained with given initial training
set {x(m), Ψ̃(0)

(
x(m)

)
}ns
m=1, for randomly selected points x(m) ∈ D, m = 1, 2, . . . , ns. Then, the

approximation Ψ̃(j) is iteratively computed from its previous Ψ̃(j−1) by solving the problem (3)
from the MoC solution (6) and by replacing Ψ(j)(s′) for its estimate from the ANN N (s′), trained
on the last l − 1-th source iteration.

The ANN-MoC algorithm follows the steps:

1. Set the ANN structure N (x) with random weights and bias.

2. Set an initial approximation Ψ(0)(x) for all x ∈ D.

3. Set ns and the set of points {x(m)}ns
m=1.

4. Train the ANN with the training set {x(m),Ψ(0)
(
x(m)

)
}ns
m=1.

5. Set the quadrature {µi, wi}Ni=1.

6. For j = 1, . . . , L:

6.a) For i = 1, . . . , N , for m = 1, . . . , ns:
• If µi > 0, then s = (x(m) − a)/µi

I
(j)
i (x(m)) = Iae

−
∫ s
0
σt ds

′
+

∫ s

0

[N (s′) + q(s′, µi)] e
−

∫ s
s′ σt ds

′′
ds′ (10)

• If µi < 0, then s = (x(m) − b)/µi

I
(j)
i (x(m)) = Ibe

−
∫ s
0
σt ds

′
+

∫ s

0

[N (s′) + q(s′, µi)] e
−

∫ s
s′ σt ds

′′
ds′ (11)

6.b) Compute Ψ(j) = 1
2

∑
wiI

(j)
i .

6.c) Retrain the ANN N (x) with the new training set {x(m),Ψ(j)
(
x(m)

)
}ns
m=1.

6.d) Check a given stop criteria.
6.e) Reset the random set of points {x(m)}ns

m=1.
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3 Results
In this section we present results of the application of the ANN-MoC method to solve two

different problems. The first is set from a manufactured solution and the second is a benchmark
problem selected from the specialized literature.

3.1 Problem 1: Manufactured Solution
We assume the exact angular fluxes are given as

Î(x, µ) = e−ασtx. (12)

By substituting in (1a), one obtains the source

q(x, µ) = (κ− ασtµ)) e
−ασtx. (13)

The exact average particle flux can be also analytically calculated as

Ψ̂(x) = e−ασtx. (14)
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Figure 1: ANN-MoC (lines) versus the exact (dots) solutions of Problem 1 for several values of κ and σs.

Figure 1 shows a comparison of the ANN-MoC versus the exact solutions for Problem 1 with
several different values of κ and σs. The approximated solutions have been achieved by using an
1-100-50-5-1 MLP with hyperbolic tangent as activation function on hidden layers and the sigmoid
function to activate the output neuron. The Adam method [7] has been used for solving the
optimization problem (9) at each training step. The Gauss-Legendre quadrature with N = 100
nodes has been assumed for the DOM angular discretization and the number of point samples has
been fixed to ns = 101. As stop criteria for the SI iterations, we have applied

∥Ψ̃(l) − Ψ̃(l−1)∥2 < max{ε, ε∥Ψ̃(l)∥}, (15)
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with ε = 10−5.

Table 1: Average flux of particles computed at selected points for Problem 1 with κ = 0.1 and σs = 0.5.
ns Ψ(0.0) Ψ(0.25) Ψ(0.5) Ψ(0.75) Ψ(1.0) ∥Ψ̃− Ψ̂∥2
11 1.0000 0.4722 0.2232 0.1051 0.0498 1.98E− 4
51 0.9998 0.4726 0.2232 0.1053 0.0498 1.48E− 4

101 0.9992 0.4724 0.2231 0.1053 0.0496 1.07E− 4
201 0.9995 0.4722 0.2231 0.1054 0.0496 1.22E− 4

exact 1.0000 0.4724 0.2231 0.1054 0.0498 -x-

Table 1 presents the average flux of particles computed at selected domain points for Problem
1 with κ = 0.1 and σt = 0.5. One can observe that the increase of sample points from ns = 11 to
201 produce similar results, which indicates the training of the MLP will not profit from further
increasing the number of samples. This is due to the randomization of the sample points at each
SI iteration.

3.2 Problem 2: Benchmark Solution
The second application of the ANN-MoC is for the benchmark problem available in the work

[16, Table 1]. The problem sources are

q(x, µ) = x− x2, (16)

and Ia = Ib = 0. The absorption coefficient is fixed to σt = 1.
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Figure 2: ANN-MoC (lines) versus the exact (dots) solutions for Problem 2 with σs = 0.9, 0.99 and 0.999.

Figure 2 shows a comparison of the ANN-MoC (lines) versus the exact (dots) solutions for
Problem 2 with the scattering coefficient set to σs = 0.9, 0.99 and 0.999. The ANN-MoC parameters
were all set as the same used for solving the Problem 1, with ns = 101. As in that case, we can
observe very good accordance between the proposed method and the expected solutions.
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4 Final Considerations
In this paper, the novel ANN-MoC method has been presented for solving unidimensional

neutral particle transport problems. Its main idea is to apply an ANN for the estimates of the
average flux of particles computed from a DOM-MoC approach. One of its advantages is to be
a meshless method, since no fixed mesh is necessary in the computations. After the convergence
of the SI iterations, the method gives an ANN to estimate the average flux at any point of the
domain. The achieved first results have been presented and they show a very good accordance
between the ANN-MoC and the expected solutions. This indicates the potential of the method
as an alternative to be applied for the solution of more complex transport problems. Further
work should also address on the ANN-MoC comparison with the classical strategy of estimating
the average fluxes by interpolation on mesh points. If from one point of view the training and
evaluation of an ANN is more expensive to compute that performing interpolation, it may be
compensated by the need of relatively small number of sample points on a meshless structure.
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