Trabalho apresentado no XLII CNMAC, Universidade Federal de Mato Grosso do Sul - Bonito - MS, 2023

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Sobre um novo índice de desempenho tipo H₂ para sistemas lineares com saltos markovianos a tempo discreto e cadeia de Markov escondida

Junior R. Ribeiro¹, Luiz H. Romero², Eduardo F. Costa³ ¹²³USP, São Carlos, SP

Resumo. Neste trabalho, abordamos a norma H_{2rti} recentemente introduzida para sistemas lineares com saltos Markovianos a tempo discreto, através de um levantamento estatístico sob a forma de *performance profile*, ou perfil de desempenho. Comparamos duas soluções sintetizadas via desigualdades lineares matriciais para o problema de controle nesta classe de sistemas, com observação parcial da cadeia de Markov via detector, para o clássico problema H_2 e para o novo índice de *performance* H_{2rti} baseado em impulso em tempo aleatório. Instâncias aleatórias foram geradas e os perfis são semelhantes para cadeias ergódicas e apontam uma clara superioridade do H_{2rti} para cadeias periódicas.

Palavras-chave. Sistemas lineares com saltos Markovianos, cadeia de Markov escondida, norma H₂, sistemas lineares estocásticos.

1 Introdução

Os sistemas de controle são importantes para a sociedade, podendo ser encontrados na indústria, nas casas, nos veículos e em diversas aplicações. Entre os diversos requisitos de um sistema de controle, é essencial a criação de mecanismos que possibilitem que o sistema continue a operar de forma segura ante falhas e mudanças abruptas em suas estruturas internas. Nesse contexto, os Sistemas Lineares com Saltos Markovianos (SLSM, ou no inglês, *Markov Jump Linear Systems - MJLS*) destacam-se e têm sido um tema de pesquisa muito ativo nas últimas décadas, com diversos resultados na literatura [1-3, 5, 7-9].

Os SLSM constituem uma classe de sistemas dinâmicos lineares estocásticos, com um conjunto finito \mathbf{M} de modos de operação, que são modelos para cada uma de suas dinâmicas internas. Estes modos são representados por uma cadeia de Markov (aqui denotada por θ). No contexto deste trabalho, trataremos dos SLSM a tempo discreto, onde a cada instante de tempo $k \ge 0$ o sistema está atuando com uma dinâmica específica de \mathbf{M} . No entanto, no próximo instante k+1 a dinâmica interna pode "saltar" de $\theta(k) = i$ para $\theta(k+1) = j, j \neq i$, aleatoriamente, de acordo com a cadeia de Markov.

Uma dificuldade bastante comum na implementação dos SLSM é quanto à observação dos modos do sistema. A observação perfeita (sem erros) da cadeia é inviável ou dificultada em várias aplicações do mundo real, e assim torna-se importante uma abordagem sem a observação da cadeia ou, pelo menos, com observação indireta ou imperfeita. No presente trabalho, a cadeia de Markov não é observada diretamente, mas por meio de um detector (aqui denotado por η), que é um processo estocástico ligado à cadeia e que é observado. Esse cenário de observação é comumente chamado de cadeia de Markov escondida ou simplesmente detector (hidden Markov chain

¹j5rodrib@gmail.com

²neoluizz@gmail.com

³efcosta@icmc.usp.br

ou detector approach). Assim, a cada instante, a cadeia no estado $\theta(k) = i$ excitará uma saída do detector $\eta(k) = \ell$ com uma determinada probabilidade $q_{i\ell}$.

Uma política de controle $\{u(k), k \ge 0\}$ pode ser avaliada sob diferentes índices de *performance*, um dos quais é amplamente conhecido como "norma H₂". Este índice, a grosso modo, avalia o quão rápido a política faz o sistema convergir para um ponto de equilíbrio, que normalmente é o zero. Mais especificamente, com o sistema em equilíbrio (em zero) é aplicado um impulso unitário no tempo k = 0 para perturbá-lo, e então é medido como a norma da saída do sistema responde ao impulso ao longo do tempo, dando-nos uma medida de desempenho da política escolhida, conforme a norma convirja mais ou menos rapidamente para zero. Já existe uma solução via Desigualdades Lineares Matriciais (*Linear Matrix Inequalities–LMIs*) bastante conhecida referente ao índice H₂, apresentada no *Theorem 3* de [7] (e reproduzida aqui, no Teorema 3.1, por conveniência).

Ocorre que a norma H_2 não é invariante no tempo, de forma que, se o impulso for aplicado em diferentes instantes, teremos diferentes valores de norma H_2 , vide [6]; nesse artigo, motivado por esta questão da variância no tempo da norma H_2 , os autores trazem um novo índice de *performance* chamado H_{2rti} (H_2 with random-time impulse – H_2 com impulso em tempo aleatório), que é um índice baseado no H_2 , mas invariante no tempo.

No presente artigo, trazemos uma comparação entre os desempenhos das políticas de controle calculadas com ambos os índices H₂ (utilizando as LMIs do *Theorem 3* de [7]) e H_{2rti} (utilizando as LMIs do *Theorem 3* de [6]), em termos da norma da saída como resposta a perturbações gaussianas e perturbações do tipo "zero-um", em quatro intervalos de tempo entre k = 500 e k = 4000, como explicado na Seção 4.

Geramos dois grupos de instâncias aleatórias, um com cadeias de Markov ergódicas e outro com cadeias periódicas. Os resultados obtidos apontam clara superioridade da solução obtida com o índice H_{2rti} para cadeias periódicas; para cadeias ergódicas o desempenho das soluções de ambos os índices são semelhantes.

2 Notações e definições

Neste artigo, as configurações são como em [6, 7]. Consideramos o espaço de probabilidade fundamental $(\Omega, \mathcal{P}, \mathfrak{F})$, munido do operador esperança $\mathbb{E}(\cdot)$ e esperança condicional $\mathbb{E}(\cdot | \cdot)$. O espaço de estados da cadeia de Markov $\theta \in \mathbf{M} = \{1, ..., N\}$, com $\theta = \{\theta(k) \in \mathbf{M}, k \ge 0\}$, e o espaço de estados do detector $\eta \in \mathbf{D} = \{1, ..., N_d\}$, com $\eta = \{\eta(k) \in \mathbf{D}, k \ge 0\}$. Assumimos que, para todo $i, j \in \mathbf{M}, \ell \in \mathbf{D}$,

$$\begin{cases} \mathcal{P}(\theta(k+1) = j \mid \theta(k) = i) = p_{ij}, \quad \mathcal{P}(\theta(k) = i) = \pi_i(k), \\ \mathcal{P}(\eta(k) = \ell \mid \theta(k) = i) = q_{i\ell}. \end{cases}$$
(1)

Ainda, escrevemos $\mathbf{D}_i = \{\ell \in \mathbf{D} : q_{i\ell} > 0\}$ o conjunto das saídas ℓ excitadas por *i*. Abaixo, o SLSM em estudo é denotado por Φ .

$$\Phi: \begin{cases} x(k+1) = A_{\theta(k)}x(k) + B_{\theta(k)}u(k) + E_{\theta(k)}w(k), \\ y(k) = C_{\theta(k)}x(k) + D_{\theta(k)}u(k), \\ \theta(0) \sim \pi(0), \ x(0) = 0. \end{cases}$$
(2)

Os parâmetros do SLSM são as matrizes reais conhecidas A_i, B_i, E_i, C_i, D_i de dimensões $n \times n, n \times n_u, n \times n_w, n_y \times n$ e $n_y \times n_u$ respectivamente, para todo $i \in \mathbf{M}$. Os processos $\{x(k)\}, \{u(k)\}, \{w(k)\} \in \{y(k)\}$ são respectivamente o componente contínuo do estado⁴ do sistema, o controle,

⁴O estado do sistema no instante k é dado pelo par $(x(k), \theta(k))$, em que o componente x(k) pertence a \mathbb{R}^n , espaço contínuo, e $\theta(k)$ pertence a \mathbb{M} , espaço discreto.

3

a entrada exógena e a saída. A distribuição inicial $\pi(0)$ é dada. Nesse modelo, assumimos uma política de controle de realimentação de estado na forma

$$u(k) = K_{n(k)}x(k),\tag{3}$$

em que as matrizes reais $K = \{K_{\ell} \in \mathbb{R}^{n_u \times n}, \ell \in \mathbf{D}\}$ são chamadas ganhos do controle.

Para cada $j \in \mathbf{M}$ e um conjunto de matrizes reais $V = \{V_{i\ell} \in \mathbb{R}^{n \times n} : i \in \mathbf{M}, \ell \in \mathbf{D}\}$, definimos os operadores

$$\mathcal{D}_j(V) = \sum_{i \in \mathbf{M}} \sum_{\ell \in \mathbf{D}_i} p_{ij} q_{i\ell} V_{i\ell}.$$

Considere e_j sendo o *j*-ésimo vetor da base canônica de \mathbb{R}^{n_w} , $\tau \ge 0$ inteiro fixado, e o processo estocástico $\mathbf{e}_{\tau} = {\mathbf{e}_{\tau}(k), k \ge 0}$ satisfazendo $\mathcal{P}(\mathbf{e}_{\tau}(\tau) = e_j) = 1/n_w$ para cada $j = 1, ..., n_w$, e $\mathcal{P}(\mathbf{e}_{\tau}(k) = 0) = 1$ para todo $k \ge 0, k \ne \tau$. As seguintes definições são adaptadas de [6].

Definição 2.1. A norma H_2 associada ao sistema Φ , denotada por $\|\Phi\|_2$, é definida por

$$\|\Phi\|_{2}^{2} = n_{w} \sum_{k=0}^{\infty} \mathbb{E}\Big(\mathbb{E}\big(\|y(k)\|^{2} \mid w(k) = \mathbf{e}_{0}(k)\big)\Big).$$
(4)

Vale a pena mencionar que os autores em [6] escrevem uma definição diferente da clássica para o índice H₂, facilitando a notação e os cálculos. Nessa modificação, o impulso unitário foi substituído pelo processo estocástico \mathbf{e}_{τ} , com $\tau = 0$. No *Remark 1* do artigo, eles mostram a equivalência das duas definições, simplesmente usando o teorema de probabilidade total.

Definição 2.2. A norma H_{2rti} associada ao sistema Φ , denotada por $\|\Phi\|_{2rti}$, é definida por

$$\|\Phi\|_{2rti}^{2} = \lim_{\tau \to \infty} n_{w} \sum_{k=0}^{\infty} \mathbb{E}\Big(\mathbb{E}\big(\|y(k)\|^{2} \mid w(k) = \mathbf{e}_{T_{\tau}}(k)\big)\Big),\tag{5}$$

em que T_{τ} é uma variável aleatória uniforme discreta no conjunto $\{0, 1, ..., \tau - 1\}$.

3 Soluções para $H_2 e H_{2rti}$

Para sintetizar o ganho K, precisamos resolver um problema de LMIs, que dispomos a seguir. Vamos escrever as soluções para o problema no próximo teorema, cuja prova pode ser encontrada em [6]. Considere a função objetivo dada por

$$f_O = \sum_{i \in \mathbf{M}} \sum_{\ell \in \mathbf{D}_i} q_{i\ell} \operatorname{tr}(W_{i\ell}),$$

em que $tr(\cdot)$ representa o traço de matriz. O problema de otimização é

$$\min_{\substack{R_{i\ell}, W_{i\ell}, G_{\ell}, F_{\ell}}} f_{O} \\
\text{sujeito a} \begin{bmatrix} R_{i\ell} - \mu_{i}E_{i}E'_{i} & A_{i}G_{\ell} + B_{i}F_{\ell} \\ (A_{i}G_{\ell} + B_{i}F_{\ell})' & G_{\ell} + G'_{\ell} - \mathcal{D}_{i}(R) \end{bmatrix} > 0, \\
\begin{bmatrix} W_{i\ell} & C_{i}G_{\ell} + D_{i}F_{\ell} \\ (C_{i}G_{\ell} + D_{i}F_{\ell})' & G_{\ell} + G'_{\ell} - \mathcal{D}_{i}(R) \end{bmatrix} \ge 0,
\end{cases}$$
(6)

para todo $i \in \mathbf{M}$ e para todo $\ell \in \mathbf{D}_i$, em que $\mu \in [0, 1]^N$ é uma distribuição específica, explicada nos teoremas a seguir.

4

Teorema 3.1 ([7], Theorem 3). Se $\mu = \pi(0)$, com F_{ℓ} e G_{ℓ} no conjunto factível de (6), então os ganhos $K_{\ell} = F_{\ell}G_{\ell}^{-1}$, $\ell \in \mathbf{D}$, levam a $f_O \geq ||\Phi||_2^2$.

Teorema 3.2 ([6], Theorem 3). Se $\mu = \lim_{k\to\infty} \frac{1}{k} \sum_{t=0}^{k-1} \pi(t)$, com F_{ℓ} e G_{ℓ} no conjunto factível de (6), então os ganhos $K_{\ell} = F_{\ell} G_{\ell}^{-1}$, $\ell \in \mathbf{D}$, levam a $f_O \geq \|\Phi\|_{2rti}^2$.

Nos Teoremas 3.1 e 3.2, temos que f_O é apenas um limitante superior para $\|\Phi\|_2^2$ e $\|\Phi\|_{2rti}^2$ em cada caso, de forma a permitir calcular os ganhos K. O valor exato de $\|\Phi\|_2^2$ e $\|\Phi\|_{2rti}^2$ é calculado via *Proposition 4* de [7] e *Theorem 3* de [6], respectivamente, mas não é o foco neste trabalho.

4 Geração de instâncias e comparação dos índices

Neste trabalho, geramos 500 instâncias aleatórias com cadeia de Markov ergódica e mais 500 com cadeia periódica. Todos os modos, de forma individual, são controláveis e observáveis no sentido clássico [4]. Em cada uma dessas instâncias, calculamos o ganho K conforme os Teoremas 3.1 e 3.2, e aplicamos em (2)-(3) com duas entradas exógenas $\{w(k)\}$. Em um teste, a entrada exógena é gaussiana: $w(k) = [s_1, ..., s_{n_w}]'$, em que $s_j \sim N(0, 1)$ são variáveis aleatórias gaussianas para todo $j = 1, ..., n_w$ para todo $k \in S$, em que $S = \{500, ..., 999\} \cup \{1500, ..., 1999\} \cup \{2500, ..., 2999\} \cup \{3500, ..., 3999\}$, e para $k \notin S$, arbitramos w(k) = 0. Em outro teste, empregamos o sinal zero-um: w(k) = [1, ..., 1]' para $k \in S$, caso contrário, w(k) = [0, ..., 0]'.

Como os índices H₂ e H_{2rti} são diferentes, não faz sentido comparar $\|\Phi\|_2$ com $\|\Phi\|_{2rti}$. Em vez disso, estimamos $Y = \sum_{k=0}^{\infty} \mathbb{E}(\|y(k)\|^2)$ via simulação de Monte Carlo com 8000 repetições para cada instância gerada, com a entrada exógena gaussiana e com a entrada zero-um definidas acima. Denotaremos Y_2 e Y_{2rti} os valores de Y correspondentes aos índices H₂ e H_{2rti} respectivamente.

Os resultados obtidos são apresentados como performance profile ou perfil de desempenho. Nesse gráfico, o eixo das abscissas é disposto no intervalo [1, f] e o eixo das ordenadas em [0, 1], em que f > 1 é uma folga arbitrada. Consideremos o gráfico referente ao índice H₂ e tomemos um ponto (x, y). A ordenada $y \in [0, 1]$ representa o percentual das instâncias em que $Y_2 \leq x \cdot \min(Y_2, Y_{2\text{rti}})$, para $x \in [1, f]$. No caso do índice H₂rti, a ordenada $y \in [0, 1]$ representa o percentual das instâncias em que $Y_{2\text{rti}} \leq x \cdot \min(Y_2, Y_{2\text{rti}})$, para $x \in [1, f]$.

5 Resultados

Foram gerados dois conjuntos de instâncias, um dos quais com cadeia de Markov ergódica e outro com cadeia periódica, cujos resultados diferiram bastante, como veremos nos gráficos adiante. Na figura 1, vemos o exemplo da saída média de uma das instâncias, com $n_y = 1$.

A comparação do desempenho dos ganhos K calculados segundo os Teoremas 3.1 e 3.2 com a entrada gaussiana está representada na Figura 2. Pode-se perceber que ambos os índices têm praticamente o mesmo perfil para instâncias com cadeia ergódica, conforme visto na Figura 2a. Neste perfil, tivemos $Y_{2\text{rti}} \leq Y_2$ em 50,6% das instâncias e $Y_2 \leq Y_{2\text{rti}}$ em 50,2% das instâncias geradas. Por outro lado, para cadeia periódica, vemos a superioridade do índice H_{2rti} na Figura 2b. Neste perfil, tivemos $Y_{2\text{rti}} \leq Y_2$ em 73,4% das instâncias e $Y_2 \leq Y_{2\text{rti}}$ em 26,6% das instâncias.

Com o sinal zero-um (Figura 3), os perfis relativos a H_2 e H_{2rti} são semelhantes para cadeia ergódica, com resultados melhores com índice H_2 em 53, 2% das instâncias geradas, contra 47, 6% do H_{2rti} ; vide Figura 3a. Para cadeia periódica, H_{2rti} é melhor em 62, 2% das instâncias, contra 47, 6% do H_2 , como se pode observar na Figura 3b.

(a) Saída média para sinal aleatório gaussiano. (b) Saída média para sinal determinístico zero-um.

0.5

0.4

0.2

1.05

1.1

folga

1.15

1.2

1.25

Figura 1: Exemplos de saídas: um sinal gaussiano e um determinístico. Fonte: autoria própria.

(a) Desempenho das soluções com cadeia ergódica. (b) Desempenho das soluções com cadeia periódica.

1.25

Figura 2: Performance profile para entrada gaussiana comparando as soluções calculadas sob os índices H_2 (marcado com \blacksquare) e H_{2rti} (marcado com \bullet). Fonte: autoria própria.

(a) Desempenho das soluções com cadeia ergódica. (b) Desempenho das soluções com cadeia periódica.

Figura 3: Performance profile para entrada zero-um comparando as soluções calculadas sob os índices H_2 (marcado com \blacksquare) e H_{2rti} (marcado com \bullet). Fonte: autoria própria.

0.65

0.6 0.5 0.

1.05

1.1

folga

1.15

1.2

5

6

6 Considerações Finais

Trouxemos uma estatística comparando as soluções para o problema de controle de Sistemas Lineares com Saltos Markovianos a tempo discreto com observação indireta da cadeia de Markov via detector, onde a solução calculada sob o índice de desempenho clássico H_2 foi confrontada com a solução de um novo índice de desempenho, chamado H_{2rti} . Foram geradas instâncias aleatórias e observadas suas respostas a um sinal de ruído gaussiano e sinal zero-um, separadas em dois grupos: um grupo de problemas com cadeia ergódica, no qual o desempenho de ambas as soluções foi semelhante para ambas as entradas, e outro grupo com cadeia periódica, onde o índice H_{2rti} se mostrou mais eficaz em 73, 4% das instâncias com entrada gaussiana e 62, 2% com entrada zero-um.

Agradecimentos

O presente trabalho foi realizado com apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) sob número 316534/2021-8 e CNPq-Universal 421486/2016-3, pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) sob número FAPESP-CEPID 2013/07375-0, e com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

Referências

- O. L. V. Costa, M. D. Fragoso e R. P. Marques. Discrete-Time Markovian Jump Linear Systems. London: Springer, 2005. DOI: 10.1007/b138575.
- [2] Vasile Dragan, Toader Morozan e Adrian-Mihail Stoica. Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems. Springer New York, NY, 2009. ISBN: 9781441906298. DOI: 10.1007/978-1-4419-0630-4.
- M. Khanbaghi, R. Malhame e M. Perrier. "White water and broke recirculation policies in paper mills via Markovian jump linear quadratic control". Em: Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207). Vol. 2. 1998, 738– 743 vol.2. DOI: 10.1109/ACC.1998.703505.
- [4] The MathWorks. State-Space Realizations. https://www.mathworks.com/help/ident/ ug/canonical-state-space-realizations.html. Online; acesso em 30/04/2023. 2013.
- [5] A. M. de Oliveira e O. L. V. Costa. "Mixed H₂/H_∞ control of hidden Markov jump systems". Em: International Journal of Robust and Nonlinear Control 28.4 (2018), pp. 1261–1280. DOI: 10.1002/rnc.3952.
- [6] Luiz H. Romero, Junior R. Ribeiro e Eduardo F. Costa. "On the H2 Control of Hidden Markov Jump Linear Systems". Em: IEEE Control Systems Letters 7 (2023), pp. 1315–1320. DOI: 10.1109/LCSYS.2023.3236892.
- [7] O. L. do Valle Costa, M. D. Fragoso e M. G. Todorov. "A Detector-Based Approach for the H₂ Control of Markov Jump Linear Systems With Partial Information". Em: IEEE Transactions on Automatic Control 60.15 (2015), pp. 1219–1234. DOI: 10.1109/TAC.2014.2366253.
- [8] Wei Wang e Chunyan Han. "Optimal filter for discrete-time Markov jump systems with measurement-delays and packet dropouts". Em: 2020 39th Chinese Control Conference (CCC). 2020, pp. 991–996. DOI: 10.23919/CCC50068.2020.9188997.
- [9] Zheng-Guang Wu et al. "H₂ Performance Analysis and Applications of 2-D Hidden Bernoulli Jump System". Em: IEEE Transactions on Systems, Man, and Cybernetics: Systems 49.10 (2019), pp. 2097–2107. DOI: 10.1109/TSMC.2017.2745679.