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1 Introduction

The paper addresses the following continuous-time nonlinear programming problem:

minimize F (z) =

∫ T

0

f(z(t), t)dt

subject to g(z(t), t) ≤ 0 a.e. in [0, T ],
z ∈ L∞([0, T ];Rn),

(CTP)

where f : Rn× [0, T ] → R and g : Rn× [0, T ] → Rm. Second-order necessary optimality conditions
for this kind of problems were derived just recently in the literature in Monte and de Oliveira [2, 3].
In these papers, a more general problem, with equality and inequality constraints, is considered.
The second-order necessary optimality conditions were established by means of an indirect analytic
approach. The results are obtained, at first, for the problems with equality constraints only, where
one of the main tools is the Uniform Implicit Function Theorem (see Pinho [4]). Then, by adding
slackness variables, the inequality constraints are transformed in equality ones and the previous
result is applied. This indirect approach has the characteristic that the regularity condition involves
not only the jacobian of the active constraints but the matrix

[
∇g(z̄(t), t) diag{−2w̄j(t)}mj=1

]
,

where w̄j(t) =
√
−gj(z̄(t), t). It would be interesting to derive optimality conditions in which the

regularity condition involves only the vectors ∇gj(z̄(t), t), with j related to the active constraint.
Here, we follow a different path. The necessary optimality conditions presented in this work are

deduced using a geometric approach. We use the concepts of tangent directions, feasible directions,
and descent directions. We show that the functional F does not admit a descent direction that is,
at the same time, also tangent to the feasible set Ω. We believe that this geometric approach is
more adequate for obtaining necessary optimality conditions under weaker and natural regularity
conditions.
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2 Preliminaries

The set of all feasible solutions will be denoted by

Ω = {z ∈ L∞([0, T ];Rn) : g(z(t), t) ≤ 0 a.e. in [0, T ]}.

We denote I := {1, . . . ,m}. The index set of the active constraints at instant t at z̄ ∈ Ω will
be denoted by Ia(t), that is,

Ia(t) = {i ∈ I : gi(z̄(t), t) = 0}.

B̄ denotes the closed unit ball centered at the origin in Rn.
A feasible solution z̄ ∈ Ω is said to be a local optimal solution of (CTP) if there exists ε > 0

such that F (z̄) ≤ F (z) for all z ∈ Ω satisfying z(t) ∈ z̄(t) + εB̄ a.e. in [0, T ].
We say that the basic assumptions are valid at z̄ ∈ Ω if there exists ε > 0 such that

(H1) f(z, ·) is measurable for each z;

f(·, t) is twice continuously differentiable in z̄(t) + εB̄ a.e. in [0, T ];

there exits Kf > 0 such that

|∇f(z̄(t), t)|+ |∇2f(z̄(t), t)| ≤ Kf a.e. in [0, T ];

(H2) g(z, ·) is measurable for each z;

g(·, t) is twice continuously differentiable in z̄(t) + εB̄, uniformly in t, a.e. in [0, T ];

g(z(·), ·) is essentially bounded in [0, T ] for each z ∈ Ω such that ∥z − z̄∥∞ < ε;

there exists Kg > 0 such that

|∇g(z̄(t), t)|+ |∇2g(z̄(t), t)| ≤ Kg a.e. in [0, T ].

3 Main Results

This section is devoted to the main results. Next, we have the definition of second-order tangent
directions.

Definition 3.1. Let z̄, γ, ζ ∈ L∞([0, T ];Rn). It is said that ζ is a second-order tangent direction
of Ω at z̄ with respect to γ if there exist sequences {zk}∞l=1 ⊂ Ω and {αk}∞l=1 ⊂ R with αk > 0 for
all k such that zk → z̄ and αk → 0, when k → ∞, and

lim
k→∞

zk − z̄ − αkγ

α2
k

= ζ.

The set of all second-order tangent directions of Ω at z̄ with respect to γ will be denoted by T 2
Ω (z̄, γ).

The set of second order tangent directions is not always a cone. Also, it may not be convex.
But it has the property stated in the proposition below.

Proposition 3.1. Let z̄, γ ∈ L∞([0, T ];Rn). The set T 2
Ω (z̄, γ) is closed.
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Proof. Let {ζl}∞l=1 ⊂ T 2
Ω (z̄, γ) be a sequence such that ζl → ζ when l → ∞. We shall show that

ζ ∈ T 2
Ω (z̄, γ). By the fact that {ζl} ⊂ T 2

Ω (z̄, γ) for all l, it follows from the definition that, for
each l, there exist sequences {zl,k}∞k=1 ⊂ Ω and {αl,k}∞k=1 ⊂ R with αl,k > 0 for all k such that
zl,k → z̄ and αl,k → 0, when k → ∞, and

lim
k→∞

zl,k − z̄ − αl,kγ

α2
l,k

= ζl.

Let {εl}∞l=1 be any sequence with εl → 0 when l → ∞. For each l, we can find k(l) big enough
such that ∥∥∥∥∥zl,k(l) − z̄ − αl,k(l)γ

α2
l,k(l)

− ζl

∥∥∥∥∥
∞

≤ εl.

Thence, ∥∥∥∥∥zl,k(l) − z̄ − αl,k(l)γ

α2
l,k(l)

− ζ

∥∥∥∥∥
∞

≤ εl + ∥ζl − ζ∥∞.

Therefore, {zl,k(l)}∞l=1 ⊂ Ω, {αl,k(l)}∞l=1 ⊂ R with αl,k(l) > 0 for all k, zl,k(l) → z̄ and αl,k(l) → 0,
when k → ∞, and

lim
k→∞

zl,k(l) − z̄ − αl,k(l)γ

α2
l,k(l)

= ζ.

Thus, ζ ∈ T 2
Ω (z̄, γ). Then, T 2

Ω (z̄, γ) is closed.

Below, we define a set that can be seen as a set of second-order feasible directions.

Definition 3.2. Let z̄, γ ∈ L∞([0, T ];Rn). One define F 2
Ω(z̄, γ) as the set of all direction ζ ∈

L∞([0, T ];Rn) such that

∇gi(z̄(t), t)
⊤ζ(t) +

1

2
γ(t)⊤∇2gi(z̄(t), t)γ(t) ≤ 0, i ∈ Ia(t), a.e. in [0, T ].

Proposition 3.2. Let z̄ ∈ Ω. Assume that (H2) holds for some ε > 0. If γ ∈ L∞([0, T ];Rn) is
such that

∇gi(z̄(t), t)
⊤γ(t) = 0, i ∈ Ia(t), a.e. in [0, T ],

then
T 2

Ω (z̄, γ) ⊂ F 2
Ω(z̄, γ).

Proof. Let ζ ∈ T 2
Ω (z̄, γ). Then, there exist sequences {zk}∞l=1 ⊂ Ω and {αk}∞l=1 ⊂ R with αk > 0

for all k such that zk → z̄ and αk → 0, when k → ∞, and

lim
k→∞

zk − z̄ − αkγ

α2
k

= ζ.

We will denote

ζk =
zk − z̄ − αkγ

α2
k

,
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so that zk = z̄+αkγ +α2
kζ

k for all k and ζk → ζ when k → ∞. By Taylor’s expansion, for each k
and for i ∈ Ia(t),

gi(z
k(t), t) = gi(z̄(t), t) +∇gi(z̄(t), t)

⊤[zk(t)− z̄(t)]

+
1

2
[zk(t)− z̄(t)]⊤∇2gi(z̄(t), t)[z

k(t)− z̄(t)] + o(∥zk(t)− z̄(t)∥2)

= ∇gi(z̄(t), t)
⊤
[
αkγ(t) + α2

kζ
k(t)

]
+
1

2

[
αkγ(t) + α2

kζ
k(t)

]⊤
∇2gi(z̄(t), t)

[
αkγ(t) + α2

kζ
k(t)

]
+ o(α2

k)

= α2
k

[
∇gi(z̄(t), t)

⊤ζk(t) +
1

2
γ(t)⊤∇2gi(z̄(t), t)γ(t)

]
+ o(α2

k),

for almost all t ∈ [0, T ], where o(α2
k)/α

2
k → 0 when k → ∞ and we have used the facts that

gi(z̄(t), t) = 0 for i ∈ Ia(t) a.e. in [0, T ] and that, by hypothesis, ∇gi(z̄(t), t)
⊤γ(t) = 0, i ∈ Ia(t)

a.e. in [0, T ]. (Let us notice that, in fact, o(∥zk(t)− z̄(t)∥2)) = o(α2
k) for almost all t ∈ [0, T ], for

o(∥zk(t)− z̄(t)∥2)
α2
k

=
o(∥zk(t)− z̄(t)∥2)
∥zk(t)− z̄(t)∥2

· ∥z
k(t)− z̄(t)∥2

α2
k

=
o(∥zk(t)− z̄(t)∥2)
∥zk(t)− z̄(t)∥2

· ∥αkγ(t) + α2
kζ

k(t)∥2

α2
k

=
o(∥zk(t)− z̄(t)∥2)
∥zk(t)− z̄(t)∥2

· α
2
k∥γ(t) + αkζ

k(t)∥2

α2
k

,

and zk(t) → z̄(t) and ζk(t) → ζ(t) uniformly for almost all t ∈ [0, T ], as k → ∞.) Provided zk ∈ Ω
for all k, we have, for each i ∈ Ia(t),

α2
k

[
∇gi(z̄(t), t)

⊤ζk(t) +
1

2
γ(t)⊤∇2gi(z̄(t), t)γ(t)

]
+ o(α2

k) ≤ 0 a.e. in [0, T ]

for all k. Dividing the expression above by α2
k and taking limit with k → ∞, the result follows.

The set defined below can be seen as the set of second-order descent directions of the functional
F .

Definition 3.3. Let z̄, γ ∈ L∞([0, T ];Rn). One define A 2
F (z̄, γ) as the set of all directions ζ ∈

L∞([0, T ];Rn) which satisfy∫ T

0

[∇f(z̄(t), t)⊤ζ(t) +
1

2
γ(t)⊤∇2f(z̄(t), t)γ(t)]dt < 0.

Proposition 3.3. Let z̄ ∈ Ω be a local optimal solution of (CTP). Assume that (H1) and (H2)
hold for some ε > 0. If γ ∈ L∞([0, T ];Rn) is such that∫ T

0

∇f(z̄(t), t)⊤γ(t)dt ≤ 0,

then
A 2

F (z̄, γ) ∩ T 2
Ω (z̄, γ) = ∅.

Proof. Assume that there exists ζ ∈ A 2
F (z̄, γ) ∩ T 2

Ω (z̄, γ). Then,∫ T

0

[∇f(z̄(t), t)⊤ζ(t) +
1

2
γ(t)⊤∇2f(z̄(t), t)γ(t)]dt < 0
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and there exist sequences {zk}∞l=1 ⊂ Ω and {αk}∞l=1 ⊂ R with αk > 0 for all k such that zk → z̄
and αk → 0, when k → ∞, and

lim
k→∞

zk − z̄ − αkγ

α2
k

= ζ.

As in the previous proof, let us denote

ζk =
zk − z̄ − αkγ

α2
k

, k = 1, . . . ,∞.

It is clear that ζk → ζ in L∞([0, T ];Rn), so that {ζk}∞k=1 is a bounded sequence (once it is
convergent) in L∞([0, T ];Rn). Let us say that ∥ζk∥∞ ≤ Kζ for all k, where Kζ > 0. By Taylor’s
expansion, we have, for each k, that

F (zk) = F (z̄) + δF (z̄; zk − z̄) +
1

2
δ2F (z̄; (zk − z̄, zk − z̄)) + o(∥zk − z̄∥2∞)

= F (z̄) + δF (z̄;αkγ + α2
kζ

k)

+
1

2
δ2F (z̄; (αkγ + α2

kζ
k, αkγ + α2

kζ
k)) + o(∥zk − z̄∥2∞)

= F (z̄) + αk

∫ T

0

∇f(z̄(t), t)⊤γ(t)dt

+α2
k

∫ T

0

[
∇f(z̄(t), t)⊤ζk(t) +

1

2
γ(t)⊤∇2hj(z̄(t), t)γ(t)

]
dt+ o(α2

k)

≤ F (z̄) + α2
k

∫ T

0

[
∇f(z̄(t), t)⊤ζk(t) +

1

2
γ(t)⊤∇2hj(z̄(t), t)γ(t)

]
dt+ o(α2

k),

where we have used the hypothesis that
∫ T

0
∇f(z̄(t), t)⊤γ(t)dt ≤ 0. Thence, by noticing that

|∇f(z̄(t), t)⊤ζk(t)| ≤ KfKζ a.e. in [0, T ] and using the Lebesgue Dominated Convergence Theo-
rem, we obtain

lim
k→∞

F (zk)− F (z̄)

α2
k

≤
∫ T

0

[
∇f(z̄(t), t)⊤ζ(t) +

1

2
γ(t)⊤∇2hj(z̄(t), t)γ(t)

]
dt < 0,

so that F (zk) < F (z̄) for k big enough. This contradicts the optimality of z̄.

It follows directly from the last two propositions the following result.

Corollary 3.1. Let z̄ ∈ Ω be a local optimal solution of (CTP) and γ ∈ L∞([0, T ];Rn) such that∫ T

0

∇f(z̄(t), t)⊤γ(t)dt ≤ 0

and
∇gi(z̄(t), t)

⊤γ(t) = 0, i ∈ Ia(t), a.e. in [0, T ].

Assume that (H1) and (H2) hold for some ε > 0. If T 2
Ω (z̄, γ) ⊃ F 2

Ω(z̄, γ), then

A 2
F (z̄, γ) ∩ F 2

Ω(z̄, γ) = ∅.
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4 Final Considerations
By making use of the previous geometric characterization of optimal solutions, by means of an

adequate alternative theorem and by defining a regularity condition appropriately, we may obtain
Karush-Kuhn-Tucker-type optimality conditions as stated next.

Theorem 4.1. Let z̄ ∈ Ω be a local optimal solution of (CTP). Assume that some adequate
constraint qualification is valid at z̄. Assume also that (H1) and (H2) hold for some ε > 0. Let
γ ∈ L∞([0, T ];Rn) be such that∫ T

0

∇f(z̄(t), t)⊤γ(t)dt ≤ 0 and ∇gi(z̄(t), t)
⊤γ(t) = 0, i ∈ Ia(t), a.e. in [0, T ].

Then there exists a multiplier u ∈ L∞([0, T ];Rp) such that

∇f(z̄(t), t) +
∑
j∈I

ui(t)∇gi(z̄(t), t) = 0 a.e. in [0, T ],

ui(t) ≥ 0, ui(t)gi(z̄(t), t) = 0 a.e. in [0, T ], i ∈ I,

and ∫ T

0

γ(t)⊤
[
∇2f(z̄(t), t) +

∑
i∈I

ui(t)∇2gi(z̄(t), t)
]
γ(t)dt ≥ 0.

The alternative theorem given in Arutyunov [1] may be an option. However, such a theorem
requires a regularity condition which involves the objective along with the inequality constraints.
This is not a genuine constraint qualification, once it involves the objective function. So, as a topic
of future work, we will investigate a proper constraint qualification and an alternative theorem.
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