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Abstract. In this paper the influence of asynchronous parametric excitation in stability maps of
the simplest electromechanical system is analyzed. The system is composed by two interacting
subsystems, a mechanical and an electromagnetic, and it has the minimum number of elements
necessary to be classified as an electromechanical system. The system does not have elements
that can store potential energies, neither mechanical nor electromagnetic. The system dynamics is
written in terms of 2 × 2 inertia matrix M and gyroscopic matrix G. Two parametric excitation
terms are introduced in G. The terms have an amplitude ϵ, frequency Ω and asynchrony with respect
to each other θ. For different values of θ, stability maps, in terms of ϵ and Ω, are constructed for
the electromechanical system with the parametric excitation. In each map, it can be seen stability
and instability regions of the trivial solution (system’s equilibrium) of the system. The objective of
the paper is to analyze how the value of θ affects these stability and instability regions.
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1 Introduction
Parametric excitation in dynamical systems is caused by the presence of periodically varying

system parameters, for example, stiffness or inertia, expressed through time-periodic coefficients in
the equations of motion. The presence of these terms can cause destabilization or also stabilization
of the trivial solution (system’s equilibrium).

Several practical applications involving parametric excitation appeared over the last years. The
destabilizing effects can be used in energy harvesting applications [7] and in parametric amplifiers.
On the other hand, the anti-resonance effect is introduced in order to attenuate vibrations and to
enhance dissipative properties. Another growing field of application is the microelectromechanical
systems (MEMS). In this field, applications employing both stabilizing and destabilizing effects
can be found.

Despite all the theoretical studies and practical applications, there still remain gaps concerning
the studies on more general systems, especially those where the parametric excitation is not syn-
chronous, i.e., when the individual system parameters have variation though of the same frequency,
but with a phase shift [2, 3].

For example, it is known that asynchronous excitation can lead to a phenomena called total
instability, which makes the trivial solution unstable for all excitation frequencies. This contrasts to
other known parametric resonance cases which are limited to rather narrow frequency ranges. This
global effect of total instability has not been studied in detail for the general case so far. Therefore
there is a special interest in exploring the stability of asynchronous parametric excitation. We
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believe that such studies might improve the performance of existing applications or even foster
new ones.

In this paper, the influence of asynchronous parametric excitation in stability maps of the
simplest electromechanical system is analyzed. The system is composed by two interacting sub-
systems, a mechanical and an electromagnetic one, and it has the minimum number of elements
necessary to be classified as an electromechanical system. The dynamic behavior of the electrome-
chanical system depends on this mutual interaction, i.e., the phenomena present in the system
response reflect this interplay between the mechanical and electromagnetic subsystems [5]. The
system is composed by a DC motor connected to a rigid disc, a motor-disc system, and does not
have elements that can store potential energies, neither mechanical nor electromagnetic.

The dynamics of the electromechanical system is parametrized with a mechanical (position of
the disc) and an electromagnetic variable (charge in the DC motor). Since these variables are
native and intrinsic to the problem, they are the most natural variables to parametrize the system
dynamics. With such kind of variables, the set of differential equations present in the initial value
problem that characterizes the system dynamics is a coupled set of equations [4].

The system dynamics is written in terms of 2 × 2 inertia matrix M and gyroscopic matrix G.
Two parametric excitation terms are introduced in G. The terms have an amplitude ϵ, frequency Ω
and asynchrony with respect to each other θ. For different values of θ, stability maps, in terms of
ϵ and Ω, are constructed for the electromechanical system with the parametric excitation. In each
map, it can be seen stability and instability regions of the trivial solution (system’s equilibrium)
of the system. The objective of the paper is to analyze how the value of θ affects these stability
and instability regions.

2 Dynamics of the electromechanical system
The electromechanical system analyzed in this paper is a DC motor connected to a disc as

shown in Fig. 1.

DC motor disc

~
Figure 1: Electromechanical system.

The initial value problem that characterizes the system dynamics is defined as follows. Find
(α, z) such that, for all t > 0,

lz̈(t) + r ż(t) + keα̇(t) = ν(t) ,
jmα̈(t) + bmα̇(t) − keż(t) = τ(t) ,

(1)

with the initial conditions α̇(0) = β0, α(0) = α0, ż(0) = c0 and z(0) = z0. In these equations, t is
the time, ν is the source voltage, z is the electric charge, α̇ is the angular speed of the disc, l is the
electric inductance, jm is the disc moment of inertia, bm is the damping ratio in the transmission
of the torque generated by the motor, ke is the motor electromagnetic force constant, r is the
electrical resistance, and τ is an external torque made over the disc.
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The system state is given by four variables, two of them mechanical (angular velocity and
position of the disc) and two of them electromagnetic (charge and current in the motor). These four
variables are native and intrinsic to the problem, natural variables to parametrize the system state.
The system dynamics, parametrized with these four variables, is given by an initial value problem
comprising a set of two coupled differential equations. The coupling between the mechanical and
electromagnetic subsystems is not given by a functional relation. It depends on the system state
and, consequently, depends on initial conditions. Writing Eq. (1) in matrix form, and assuming
bm = 0, r = 0, ν = 0 and τ = 0 to get a conservative system, i.e., the simplest electromechanical
system, we obtain: [

l 0
0 jm

] [
z̈(t)
α̈(t)

]
+

[
0 ke

−ke 0

] [
ż(t)
α̇(t)

]
=

[
0
0

]
, (2)

MŸ(t) + GẎ(t) = 0 , (3)

where M and G will be called inertia and gyroscopic matrices respectively and Y =
[

z
α

]
. The

initial conditions become Ẏ(0) =
[

c0
β0

]
and Y(0) =

[
z0
α0

]
. Matrix G is skew symmetric, i.e.,

G⋆ = −G, where □⋆ indicates Hermitian matrix. It is interesting to notice that despite calling M
and G inertia and gyroscopic matrices, an usual terminology used in mechanical systems [6], here
these two matrices have a different physical interpretation from the traditional one. M is not an
inertia matrix like those that appear in purely mechanical systems. M is composed by elements
that represent inertia of two different natures, a mechanical and an electromagnetic. G is also not
a traditional gyroscopic matrix. In purely mechanical systems, a gyroscopic matrix usually couples
motions in different directions. Here G couples the mechanical and electromagnetic subsystems.
It is responsible for the interplay of energies between these two subsystems.

Besides having inertia and gyroscopic matrices with different physical interpretation, Eq. (3)
has another big difference from what is found in dynamics of purely mechanical systems. It does not
have a matrix composed by elements that can store potential energies to be called stiffness matrix.
Our system system has neither elements that can store mechanical potential energy, as springs,
nor elements that can store electric energy, as capacitors. Its dynamics equation is composed only
by inertia and gyroscopic matrices.

Let us rewrite Eq. (3) as a first order differential equation. Making α̇ = β and ż = c, where β
represents the angular velocity of the disc and c represents the current in the electric circuit of the
DC motor, it is possible to rewrite Eq. (3) as

MẊ(t) + GX(t) = 0 , (4)

where X = Ẏ =
[

c
β

]
. The initial condition turns into X(0) =

[
c0
β0

]
. Once the solution of the

IVP involving Eq. (4) is obtained, it can be integrated to become the solution of the IVP involving
Eq. (3). The constants of integration that will appear in this integration should be computed so
that the initial condition Y(0) is satisfied.

Since l and jm are considered to be non-zero, M is an invertible matrix. Thus, Eq. (4) can be
rewritten as

Ẋ(t) = −M−1 G X(t) = AX(t) , (5)

where A = −M−1G.
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3 Solution of the system dynamics
We propose as solution to the dynamics of the simplest electromechanical system X = U eλ t,

where U is a non-zero constant vector and λ a scalar. Substituting the proposed general solution
into the system dynamics, we get (A − λ I)U = 0, which forms an eigenvalue problem.

3.1 Natural frequency and modes of the electromechanical system
Since U ̸= 0, the matrix (A − λ I) is singular. Thus:

det
(

A − λ I
)

= 0 ⇒ λ2 + k2
e

l jm
= 0 ⇒ λ1,2 = ± ke√

l jm
i , (6)

where i =
√

−1. Substituting the two eigenvalues λ1,2 into the eigenvalue problem, it is possible

to write (A − λ1 I)U1 = 0 and (A − λ1 I)U2 = 0. For λ1 = ke√
l jm

i, the associated eigenvector is

U1 =
[

i jm/
√

l jm

1

]
. For λ2 = − ke√

l jm
i, the associated eigenvector is U2 =

[
−i jm/

√
l jm

1

]
.

The eigenvalues λ1,2 give a natural frequency of the system ωn = ke√
l jm

. The eigenvectors U1 and
U2 are modes. Observe that the natural frequency, ωn, and the modes are hybrid. They involve
mechanical and electromagnetic parameters. Since two pairs of eigenvalues and eigenvectors were
found, the general solution will be a linear combination of the two found solutions eλ1 t U1 and
eλ2 t U2. It can be written as:

X(t) = a eλ1 t U1 + b eλ2 t U2 =

 cos
(

ke√
l jm

t

)
jm√
l jm

h − sin
(

ke√
l jm

t

)
jm√
l jm

d

cos
(

ke√
l jm

t

)
d + sin

(
ke√
l jm

t

)
h

 , (7)

where a and b are constants, d = a + b and h = i(a − b). The constants a and b are computed so
that Eq. (7) satisfies the initial condition X(0). Thus,

h =
√

l jm

jm
c0, d = β0 . (8)

Figures 2(a) and 2(b) show a solution of Eq. (5). The parameter values used in the construction
of the graphs are listed in Table 1. The motor parameters were obtained from the specifications
of the motor Maxon DC brushless number 411678. The initial conditions are c0 = 1.000 Amp and
β0 = 1.000 rad/s.

Table 1: Parameter values.
l = 1.880 × 10−4 H ke = 5.330 × 10−2 V/(rad/s)
jm = 1.210 × 10−4 kg m2

4 Asynchronous parametric excitation
An asynchronous parametric excitation is introduced in the system as shown Eq. (9),
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Figure 2: (a) Current and (b) angular velocity the disc.

[
l 0
0 jm

] [
z̈(t)
α̈(t)

]
+ ke

([
0 1

−1 0

]
+ ϵ

[
0 cos(Ωt)

− cos(Ωt + θ) 0

]) [
ż(t)
α̇(t)

]
=

[
0
0

]
. (9)

The parametric excitation terms have an amplitude ϵ, frequency Ω and asynchrony with respect
to each other θ.

Before starting the analysis of stability of the system with the parametric excitation, let us

rewrite Eq. (9) as a first order differential equation. Making X = Ẏ =
[

c
β

]
, it is possible to

rewrite Eq. (9) as
Ẋ(t) = B(t)X(t) , (10)

where B = −
[

1/l 0
0 1/jm

]
ke

([
0 1

−1 0

]
+

[
0 ϵ cos(Ωt)

−ϵ cos(Ωt + θ) 0

])
.

With a set of two linear independent solutions (x1, x2) of Eq. (10), it is possible to construct
a matrix called fundamental matrix as Φ(t) = [x1 x2].

Floquet theorem affirms that the fundamental matrix Φ(t) with Φ(0) = I has a Floquet normal
form Φ(t) = Q(t)eSt where Q ∈ C1(R) is a periodic invertible matrix with period T for all t and
S ∈ C2×2 is a constant matrix given by S = 1

T ln(Φ(T )) [1].
The solutions of Ẋ(t) = B(t)X(t) are products of periodic functions with eSt and stability is

determined through the eigenvalues of S. However, in general, obtaining matrix S explicitly is not
possible. Therefore, a numerical approximation of Φ(t) can be used to evaluate stability of the
trivial solution of Ẋ(t) = B(t)X(t).

A numerical approximation of Φ(t) can be found by taking Φ(0) = I (identity matrix) to obtain
the monodromy matrix:

R = eST = Φ(T ). (11)

The eigenvalues of R, γ1, γ2 are known as Floquet multipliers. Therefore, the trivial solution
of Ẋ(t) = B(t)X(t) can be classified as stable, asymptotically stable or unstable (in the sense of
Lyapunov), using the following criterion given by Floquet’s theory. If |γn| ≤ 1 for n = {1, 2},
the trivial solution is stable. If |γn| < 1 for n = {1, 2}, is asymptotically stable. It is unstable
otherwise. Another way to analyze the stability of the trivial solution Ẋ(t) = B(t)X(t) is using
the Lyapunov characteristic exponents (LCEs) µn that are the real parts of the eigenvalues of B.
They can also be obtained directly by the Floquet multipliers as µn = 1

T ln |γn|.
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The trivial solution is stable if µn ≤ 0 for n = {1, 2}; asymptotically stable if µn < 0 for
n = {1, 2}; unstable otherwise. Being Λ = max {µn}, it is sufficient that Λ ≤ 0 for the trivial
solution of Ẋ(t) = B(t)X(t) to be stable.

5 Stability maps
To analyze the influence of the parameters ϵ, Ω and θ in the classification of the stability of the

trivial solution, stability maps were constructed for different combinations of these parameters. For
each combination, the steps made in the numerical simulations are: 1) obtain an approximation
of the fundamental matrix Φ(t) on the interval [0, T ] with initial conditions Φ(0) = I; 2) compute
the monodromy matrix R = Φ(T ); 3) compute the eigenvalues of R, the Floquet multipliers; 4)
obtain the LCEs and Λ in order to make the classification.

For each of the following values of θ, {0, 0.1, 0.3, 0.5, 0.7, 1} π/2, a stability map was con-
structed for values of Ω in the interval [20, 1400] [rad/s] and ϵ in the interval [0.1, 1]. The maps
are shown in Figure 3.

Figure 3: Stability maps for different values of θ.

It is possible to observe that for θ = 0 there are no regions of instabilities. We will call this
total stability. For θ > 0, the instabilities appear and as θ increases, the regions of instability
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increase. Also the regions of instability in the parameter space of Ω and ϵ originate from the
critical frequencies

Ωcrit = 2ωn

p
, p ∈ N. (12)

6 Conclusions
This work analyzed the influence of asynchronous parametric excitation in stability maps of the

simplest electromechanical system. To construct the stability maps, numerical approximations of
linear independent solutions of the system dynamics were computed and the stability was analyzed
with the Lyapunov characteristic exponents. The focus of the work was to determine the influence
of the phase between the parametric excitation terms in the stability of the trivial solution. Six
stability maps were plotted with the aim of showing regions of stability and instability in function
of parameters Ω and ϵ. It is possible to observe that for θ = 0 there are no regions of instabilities,
what we called total stability. For θ > 0, the instabilities appear and as θ increases, the regions of
instability increase.
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