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Abstract. Data assimilation (DA) is an essential process to identify the best initial conditional
by combining data from an observation system with a previous prediction from a numerical si-
mulation of a given dynamical system. This paper describes the effort to develop a framework
for testing different methods applied to two dynamical systems. The framework was implemented
using the Google CoLab platform, and Octave free mathematical software. The dynamic systems
used for testing is the Lorenz system under the chaotic regime, and 2D shallow water — for ocean
circulation modeling.
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1 Introduction

Applied mathematics and scientific computing are key factors for the development of science
and technology of the XX century. An important example of this advance is the modern numerical
weather prediction (NWP). Indeed, weather prediction was one of the dreams for the humanity.
The Norwegian physicist and meteorologist Vilhelm Bjerknes, around the year 1904, stated that
weather prediction can be formulated as an initial value problem. The mathematical equations to
be solved were the Navies-Stokes equations modeling the fluid flow dynamics.

However, the first attempt to address the problem figured out by Bjerknes was the English
scientist Lewis Fry Richardson. Richardson published a book describing a numerical process to
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predict weather dynamics [Richardson:1922]. But, the forecasting shown in Richardson’s book
failed. There are, at least, two reasons to understand why that prediction did not work: there was
no constrain between time and space discretizations (Richardson used an explicit method for time
integration), and the pressure and wind atmospheric fields were out of balance [Lynch:2006]. The
second issue shows the necessity to focus on estimation of the initial condition [Daley:1993]

Only with the development of the numerical analysis, it was possible to apply stable numerical
algorithms for solving time evolution partial differential equations. Charney, Fjørtoft and Von
Neumann [Charney:1950] showed sthe first successful weather prediction by using computer
methods. Nowadays, very sophisticated numerical software is employed for the NWP. Beyond to
solve the Navier-Stokes equations, many physical processes need to be modeled, such as radiation,
cloud formation, precipitation, surface-atmosphere interaction, turbulence, for citing few effects.
In fact, the NWP is in a permanent development [Nature:2015].

Better prediction is linked to calculate a good initial condition. The procedure to compute the
best initial condition as possible is called data assimilation (DA). The DA is a process for data fu-
sion between observation and previous forecasting [Kalnay:2002]. With the amount of data to be
processed, the DA becomes the more intense computer task for the NWP into operational centers.
This motivated the development of new algorithms based on artificial neural networks for speeding
up the DA procedure [Cintra:2018]. A multi-institutional effort to develop a framework for tes-
ting new algorithms and software/hardware strategies was established by using cloud computing
(Google CoLab platform), and Octave free software. This paper describes the scientific software
development of the platforms developed for testing new algorithms for DA applying self-configuring
neural networks. Two dynamical systems can be used for testing.

2 Dynamical models
Two dynamical systems were selected for testing methods for data assimilation: Lorenz sys-

tem [Lorenz:1963], and a simplified model to simulated ocean circulation on limited area [Bennett:2002].

2.1 Lorenz System
Edward Lorenz studying the behavior of the atmosphere presented a system of three non-linear

coupled differential equations [Lorenz:1963]

dx/dt = σ (y − x) , (1)
dy/dt = ρ x− y − x z , (2)
dz/dt = x y − β z . (3)

The system above shows a chaotic dynamics with the parameter values: (σ, ρ, β) = (10, 28, 8/3).
Due to non-linear system of equations, with strong dependence of the initial conditions, the Lorentz
system has been used for testing DA algorithms [Goodliff:2015].

2.2 Shallow Water Equations
For multi-dimensional system, the model used in the Bennett’s book [Bennett:2002] is also

employed here. The ocean circulation is simulated by a shallow water 2D (SW-2D) approach, for
t > 0:

∂u/∂t− fv + g (∂q/∂x) + ruu = −Cd ρa u
2
a/(H ρw) (4)

∂v/∂t+ fv + g (∂q/∂y) + rvv = 0 (5)
∂q/∂t+H [(∂u/∂x) + (∂v/∂y)] + rqq = 0 (6)
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where (u, v) are the ocean stream components, q is the ocean surface depth, H is the average ocean
depth, f is the Coriolis parameter, and (ru, rv, rq) are damping coefficients [Bennett:2002]. In
equation (4), Cd is the drag parameter, (ρa, ρw) are air and water (ocean) densities, respectively,
and ua is the surface zonal wind. The space domain is a limited area: Ω(x, y) ≡ (0, Lx)× (0, Ly),
with appropriated boundary conditions on ∂Ω [Bennett:2002].

3 Data Assimilation Methods

3.1 Kalman filter
Kalman filter (KF) is well known scheme to estimate a dynamical state by a weighted average

between the model prediction and measured data. The dynamical system is assumed to be a
Gaussian stochastic process. The weighted average is computed by the Kalman gain (K). The
algorithm for DA can be summarized as follows:

1. Prediction and observation equations:

xp
n+1 = Fn x

p
n + µn (7)

yp
n+1 = Hn+1 x

p
n+1 + νn (8)

2. Covariance matrix for the prediction, and Kalman gain:

Pp
n+1 = Fn x

p
n+1 F

T
n + WMod

n (9)

Kn+1 = Pp
n+1 H

T
n+1

[
WObs

n + HT
n+1 P

p
n+1 H

T
n+1

]
(10)

3. Compute the analysis (DA process), and covariance matrix for the analysis:

xa
n+1 = xp

n+1 + Kn+1

[
yObs
n+1 − (Hn+1 x

p
n+1)

]
(11)

Pa
n+1 = [I−Kn+1 Hn+1] Pp

n+1 (12)

In the Kalman filter process, µn and νn are random white Gaussian noises, matrices WMod
n

and WObs
n are covariances for model and observation errors, respectively, Kn is the Kalman gain,

xp
n+1 and xa

n+1 are predicted and analysis state vectors, the first equation (7) represents our
discrete dynamical system. The KF algorithm can be adapted for non-linear dynamical systems
[Furtado:2011].

3.2 Self-configuring neural network
There are many successful applications with the use of artificial intelligence (AI). One of the

most employed AI approaches is the artificial neural network (NN). However, applying NN for DA
is relatively recent. Cintra and Campos Velho applied a supervised multilayer perceptron (MLP),
using back-propagation algorithm for the learning process, to emulate the Kalman filter – with a
significant reduction of the CPU-time [Cintra:2018].

Basically, NN is a non-linear mapping between inputs and outputs. In our application, the
inputs are the prediction state (xp

n+1) and the observation vector (yn+1), with the output being
the analysis (xa

n+1). One challenge is to determine the best architecture to the NN to be employed.
There are several hyperparameters to be selected: number of hidden layers, number of neurons for
each hidden layer, type of activation function, number of epochs, and the training phase parameters
– η and α, learning and momentum rates, respectively.
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Our approach is to formulate the NN configuration as an optimization problem. The objective
function to be minimized is given by:

J(Q) = penalty ×
[
ρ1ETrain + ρ2EGen

ρ1 + ρ2

]
(13)

penalty = c1 exp(#{neurons2)}+ c2 {#(epochs)}+ 1 (14)

vector Q denotes the NN hyperparameters to be identified, (ETrain, EGen) are learning and ge-
neralization errors, respectively, (ρ1, ρ2) are parameters to indicate our attention to the error to
be minimized (we adopt: ρ1 = ρ2 = 1/2). The penalty term indicates that we are looking for
the simplest architecture to the MLP-NN, with the smallest number of artificial neurons and the
fastest convergence during the learning process for computing the connection weights. The opti-
mization problem (13) is solved by the MPCA (multi-particle collision algorithm) meta-heuristic
[Luz:2008].

4 Octave package in the Google-CoLab platform
Originally, we start to develop our computer codes using Fortran language. When more people

were joining this research, applying NN to the DA, one strategy to amplify and make easier
the development/testing of algorithms was to use modern platforms using computing resources
available on the internet. Such a strategy allows the employment of different computer languages,
hardware resources, and cloud computing environments. As a first comment, Google-Colab [Colab]
is a free cloud computing environment, where the users have access to the CPU multi-core, GPU
and TPU co-processors. Code executions on Google-Colab use Python language.

Beyond Python language, other computer languages can also be used in the Colab platform, as
R and Octave languages. GNU Octave [Octave] is a programming standard to deal with scientific
and numerical computations, and it is mostly compatible with MATLAB. Part of our development
was migrate to the Octave language.

The MPCA Fortran code for self-configuring neural network architecture, with worked example,
is available by accessing the internet address: https://github.com/sabrinabms/RNA-MPCA. There
is MPCA Python version to the Colab, accessing: https://colab.research.google.com/github/
sabrinabms/RNA-MPCA/blob/main/rna%26mpca local.ipynb. Shallow water system (see Sec-
tion 2) executions applying KF and NN approaches for DA can be run accessing Fortran code by
https://github.com/robertopsouto/kfs2d rna mirror. Executions for shallow water system
by the Octave language on the Colab can be accessed at: https://colab.research.google.com/
drive/1IBLHruTzAuMqKLfZLTkJH575FCnjOhVk .

5 Data assimilation results
Figure 1 illustrates the relevance of the DA process. In the numerical experiment, the dotted

blue line represents the true world (reference), where the initial condition for the prediction has a
smaller difference related to true values. The green square boxes are observations – the true values
added to a small random forcing. Figure 1 Figure 1 shows three time periods: during the first and
the last ones, there is no visual difference between the simulated and the reference dynamics, while
in the middle part of the plot – without DA procedure – there is a full disagreement between the
two dynamics (reference and simulation (red line)). Therefore, an acceptable prediction under a
chaotic dynamical regime is only possible by applying a data assimilation scheme.

The result of applying the MPCA for self-configuring the MLP-NN to emulate the KF approach
to the shallow water 2D model is displayed in Figure 2. Simulations were executed considering 25
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Figura 1: Lorenz system: prediction (red line) with DA and without DA – see [Furtado:2011].

measures in the domain for the q-variable only. It is easy to realize that the analysis produced by the
MLP-NN with optimal architecture (ANN : dotted lines) is closer to the reference values (TRUE :
strong continuous lines) than the analysis computed with KF (KF : weak continuous lines). These
results were obtained with Fortran code. The CPU-time for KF was approximately 42 minutes,
while NN spends about 1 minute and a half, indicating that NN was more than 25 times faster
than KF.

For numerical experiments with Lorenz and shallow water systems, the assimilation cycle is
activated after each 10 time-steps. Table 1 shows the root least mean square error (RMSE) from
the experiments with Lorenz system and shallow water equations.

Tabela 1: DA error for KF and NN assimilation schemes.

Lorentz system KF error NN error Shallow water KF error NN error
x 0.3391 0.3781 u 0.0296 0.0199
y 0.3862 0.3423 v 0.8554 0.7794
z 0.9757 0.3850 q 0.5969 0.1460

6 Final Remarks

The goal of the present paper is to share the information of a scientific computing environment
for developing/testing new algorithms for data assimilation applied to two dynamical models.
Other results using the TPU (Tensor Processing Unit) co-processor were obtained with the Colab
platform – it is not shown here: partial result for the D.Sc. thesis of one of the authors. The envi-
ronment for DA was used during the short course held in February 2023, organized and promoted
by the National Laboratory of Scientific Computing (LNCC: Laboratório Nacional de Computação
Científica), Petrópolis (RJ, Brazil) [LNCC:2023].
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Figura 2: Isovalue curves for ocean surface level q(x, y) – see [CVelho:2022].
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