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Abstract. This work provides a numerical solution to the Malthusian model, considering the
initial condition as a fuzzy value. The numerical solution is provided from Euler’s method, in which
the operations built into the method are adapted to fuzzy numbers. This numerical solution is
compatible with the analytical solution obtained from the generalized Hukuhara derivative. An
example is presented to illustrate the methodology.
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1 Introduction

The study of Fuzzy Differential Equations (FDE) are important to describe some phenom-
ena that have some kind of uncertainty or imprecision, whether in the initial conditions/problem
boundary or in the parameters involved. In this case, imprecision is modeled by fuzzy numbers,
which are an extension of real numbers. For the study of FDEs, it is first necessary to take into
account the type of derivative that rules the field. Our focus will be on the generalized Hukuhara
derivative, which is the most used in the literature. To approximate the solution of a FDE accord-
ing to the generalized Hukuhara derivative, Esmi et al. [6] proposed a numerical method based on
a fuzzy arithmetic called Jγ-interactive arithmetic. The arithmetic was originally build to fuzzy
numbers [7] and adapted to interval value in [6] in order to prove that the proposed numerical
method is connected with the analytic solution of FDE via generalized Hukuhara derivative.

This work will use the theoretical results presented in [6] to provide a numerical solution for
the Malthus population model. Malthus model considers no restriction of space and food of the
population, so the population grows proportionally to itself. Here we will assume that the initial
value of a population is uncertain and will be modeled by fuzzy numbers. The objective is to
analyze how the uncertainty about the initial condition evolves over time, from the Jγ-interactive
arithmetic.
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To illustrate the analysis and interpretation, we will perform a computer simulation presenting
the numerical solution obtained considering two cases, the first is the case in which the generalized
Hukuhara derivative of type (I), that is, expansive and the other is the case where the generalized
Hukuhara derivative of type (II), that is, contractive [1].

The work is structured as follows: Section 2 provides preliminary results for a good understand-
ing of the work. Section 3 presents the analytical solution via gH-derivative to the Malthusian
model. Section 4 presents the numerical solution via interactive arithmetic and the comparison
between them. Finally, Section 5 presents the final remarks of the work.

2 Mathematical Background
This subsection presents the fuzzy set theory and a mathematical background necessary for

this paper.
First, we briefly present the numerical method that will be used in this work. Euler’s method

produces a numerical approximation to the solution of differential equations of the type x′ = f(t, x).
The method consists of, starting from an initial condition x0, calculate:

xn+1 = xn + hf(tn, xn)

where h is h = tn+1 − tn and xn is the approximation of x(tn) [9].
A fuzzy subset A of a universe X is defined by a function called membership function φA that

maps elements of X in [0,1]. This function can be interpreted as follows, as closer φA(x) is to 1
the greater the membership of x in A, where φA(x) = 1 means total association with the set A.
A fuzzy set can be also characterized with a class of real subsets called α-levels. For 0 < α ≤ 1,
the α-level of A is defined by the classical set [A]α = {u ∈ X : φA(u) ≥ α}. For the case where X
is also a topological space, the 0-level of A is defined by [A]0 = cl{u ∈ X : φA(u) > 0}, where clY
denotes the closure of the subset Y ⊆ X.

As an extension of real numbers, a fuzzy number is defined from the following properties [4, 5].
A fuzzy subset A of R is a fuzzy number if it satisfies:

1: every α-level of A is a nonempty and close interval of R;

2: SuppA = {u ∈ R | φA(u) > 0} is bounded.

The set of fuzzy numbers is denoted by RF .
Since the α-levels of a fuzzy number A are intervals, we represent them by [A]α = [aα, aα].

The diameter of [A]α is defined by diam([A]α) = aα − aα and can be interpreted by the amount
of uncertainty that it models. A translation of a fuzzy number A by the midpoint of [A]1, i.e.,
a = 0.5(a1 + a1), is the fuzzy number At with α-level given by [At]α = [atα, a

t
α]. This translation

leads to two interesting properties: atα ≤ 0 ≤ atα, for all α ∈ [0, 1] and [A]α = [At]α+a. Translations
are important to construct the interactive arithmetic that we will presented further up.

The notion of interactivity arises whenever a joint possibility distribution (JPD) is given [8,
11]. A JPD for fuzzy numbers A1, . . . , An is a fuzzy set J of Rn such that

φAi
(w) = sup

v∈Rn,vi=w
φJ(v)

for all w ∈ R and i = 1, . . . , n. In other words, if each fuzzy number Ai can be obtained by the
projection in the i-th direction. In this sense, Ai is also called by marginal.

The sup-J extension of a function m : Rn → R at A1, . . . , An is a fuzzy set mJ(A1, . . . , An) of
R with membership function

φmJ (A1,...,An)(u) = sup
(x1,...,xn)∈m−1(u)

φJ(x1, . . . , xn), (1)
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where m−1(u) = {(x1, . . . , xn) ∈ Rn : m(x1, . . . , xn) = u} [8].
Let J be a given JPD for fuzzy numbers A1, . . . , An. If J = J∧, we say that A1, . . . , An

are non-interactive, otherwise, they are said to be interactive. In this case, if J = J∧ then the
sup-J extension is equal to the Zadeh’s extension principle [11]. From this tool it is possible to
define different arithmetics for fuzzy numbers. For example, the standard arithmetic is defined
when J = J∧ and here we will denote this operations by +,−,×,÷, when J ̸= J∧ we denote the
operations by +J ,−J ,×J ,÷J .

Unfortunately, the standard arithmetic lacks on good properties, such as the opposite element
under the sum. In order to avoid these issues, several arithmetic operations were defined.

Given A,B ∈ RF . If there exist a fuzzy number H such that{
(I) A = B +H or

(II) B = A−H
, (2)

then H is said to be the generalized Hukuhara difference (or, for short, the gH-difference) of A
and B, which is denoted by A−gH B.

Definition 2.1. [2] A function v : (a, b) → RF is said to be generalized Hukuhara differentiable
(or, for short, gH-differentiable) at t0 ∈ (a, b) if there exists a fuzzy number v′gH(t0) ∈ RF such
that

v′gH(t0) = lim
h→0

v(t0 + h)−gH v(t0)

h
,

where the limit is taken using the (Hausdorff) metric d∞ [4].
Moreover, if the gH-difference v(t0 + h)−gH v(t0) satisfies the case (I) for all sufficient small

|h|, then the function v is said to be gH-differentiable of type (I) or, simply, (I)-gH-differentiable
at t0. Similarly, if the gH-difference v(t0+h)−gH v(t0) satisfies the case (II) for all sufficient small
|h|, then the function v is said to be gH-differentiable of type (II) or, simply, (II)-gH-differentiable
at t0.

This paper considers a family of JPDs given by (Jγ), γ ∈ [0, 1], which was first presented by
Esmi et al. [5]. The sup-J extension principle applied to Jγ gives raise to the following interactive
sum.

Theorem 2.1. [5] Let A,B ∈ RFC , whose α-levels are [A]α = [a−α , a
+
α ] and [B]α = [b−α , b

+
α ]. Let

a =
α−

1 +α+
1

2 , (a(a))−α = a−α − a and (a(a))+α = a+α − a. Hence for each γ ∈ [0, 1], it follows that the
α-levels of A+γ B are given by

[A+γ B]α = [c−α , c
+
α ] + {a+ b}

where,
c−α = inf

β≥α
h−
(A+B)(β, γ) e c+α = sup

β≥α
h+
(A+B)(β, γ),

with
h−
(A+B)(β, γ) = min{ (a(a))−β + (b(b))+β + γ((b(b))−β − (b(b))+β ),

(a(a))+β + (b(b))−β + γ((a(a))−β − (a(a))+β ),

γ((a(a))−β + (b(b))−β )}
and

h+
(A+B)(β, γ) = max{ (a(a))−β + (b(b))+β + γ((a(a))+β − (a(a))−β ),

(a(a))+β + (b(b))−β + γ((b(b))+β − (b(b))−β ),

γ((a(a))+β + (b(b))+β )}.
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The JPD J1 is equivalent to the Cartesian product A × B, consequently the sum A +J1 B is
equivalent to the standard sum A + B. In this case, from the perspective of fuzzy set theory,
the operands are called non-interactive. On the other hand, for γ = 0 we obtain the highest
constrain in the Cartesian product. In this case the operands A and B have the highest “level” of
interactivity, which is similar to the one of the cases of completely correlation [3].

The next two subsections present the analytical solution via generalized Hukuhara derivative
and its numerical approximation via Jγ interactive sum to the Malthusian model.

3 Analytical solution to the Malthusian Model via
gH-derivative

The Malthusian model is given by the following differential equation:

x′(t) = λx(t). (3)

Here we consider that the initial condition X0 is given by a fuzzy number. Moreover, we consider
that derivative of (3) is the gH-derivative. So, the Fuzzy Initial Value Problem (FIVP) associated
with this problem is given by {

x′
gH(t) = λx(t)

x(t0) = X0 ∈ RFC

, (4)

where λ > 0.
In order to solve the FDE given in (4) we can associated the fuzzy problem with a system of

classical differential equations, such as

{
(x′

gH(t))−α = (λx(t))−α
x(t0) = [(X0)

−
α , (X0)

+
α ]

and

{
(x′

gH(t))+α = (λx(t))+α
x(t0) = [(X0)

−
α , (X0)

+
α ]

, (5)

if the gH-derivative is the type (I) and

{
(x′

gH(t))−α = (λx(t))+α
x(t0) = [(X0)

−
α , (X0)

+
α ]

and

{
(x′

gH(t))+α = (λx(t))−α
x(t0) = [(X0)

−
α , (X0)

+
α ]

, (6)

if the gH-derivative is the type (II).
If the gH-derivative is the type (I), then the solution is given by x(t) = [(X0)

−
α , (X0)

+
α ]e

λt and if
the gH-derivative is the type (II), then the solution is given by x(t) = [c1e

λt+c2e
−λt, c1e

λt−c2e
−λt],

where c1 and c2 are constants determined by the initial condition of the problem. Figures 1 and
2 depict these solutions. Note that the solution of type (I) is an expansive process, whereas the
solution of type (II) is a contractive process. In all the next figures the gray-scale lines varying
from white to black represent the α-levels of the analytical or numerical solution, where α varies
from 0 to 1.
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Figure 1: Analytical solution to the Malthusian model, considering the gH-derivative of type (I). The
gray-scale lines varying from white to black represent the α-levels of the solution, where α varies from 0
to 1.

Figure 2: Analytical solution to the Malthusian model, considering the gH-derivative of type (II). The
gray-scale lines varying from white to black represent the α-levels of the solution, where α varies from 0
to 1.

4 Fuzzy numerical solution to the Malthusian model via Jγ-
interactive arithmetic

The numerical method considered here is given by the Euler’s method, where the classical
operations involved are adapted to fuzzy numbers [10]. In another words, the numerical solution
via Euler’s method is given by

Xn+1 = Xn +J hλXn, (7)

where +J is an interactive sum.
According to Esmi et al. [6] the interactive arithmetic +J0 approximates the analytical solution

via gH-derivative of type (I) for intervals values, whereas the arithmetic +J1 approximates the
analytical solution via gH-derivative of type (II). Hence, we consider here two numerical methods:

Xn+1 = Xn +0 hλXn, (8)

which we expect that approximates the fuzzy solution via gH-derivative of type (I) and

Xn+1 = Xn +1 hλXn, (9)

which we expect that approximates the fuzzy solution via gH-derivative of type (II).
Figures 3 and 4 illustrate the numerical solution obtained for γ = 1 and γ = 0, respectively.

Note that the numerical solution via γ = 0 is contractive and the numerical solution via γ = 1 is
expansive, corroborating theoretical results [7].
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Figure 3: Fuzzy numerical solution to the Malthusian model considering the arithmetic +J1 . The gray-
scale lines varying from white to black represent the α-levels of the numerical solution, where α varies from
0 to 1.

Figure 4: Fuzzy numerical solution to the Malthusian model considering the arithmetic +J0 . The gray-
scale lines varying from white to black represent the α-levels of the numerical solution, where α varies from
0 to 1.

The next figure presents the 0-level of the fuzzy analytical and numerical solutions in order to
compare the results.

Figure 5: Comparison between the 0-levels of the analytical and numerical solutions to the Malthusian
model. The left subfigure represents the expansive process, associated with the gH-derivative of type
(I). The right subfigure represents the contractive process, associated with the gH-derivative of type (II).
The blue lines represent the analytical solution and the red squares represent the numerical solution via
interactive arithmetic.
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5 Final Remarks
This work presents a numerical solution to the Malthusian model considering fuzzy numbers as

initial value. The simulations presented here showed that the numerical solution via J1 arithmetic
approximates the analytical solution via gH-derivative of type (I), whereas the numerical solution
via J0 arithmetic approximates the analytical solution via gH-derivative of type (II), extending the
results presented in [6].

As future work, we intend to prove that the numerical solution via J1 approximates any an-
alytical solution of gH-derivative of type (I) and the numerical solution via J0 approximates any
analytical solution of gH-derivative of type (II), for the fuzzy case.
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