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Abstract. In this work, two inverse problems related to pollutant dispersion in a river considering
the advection-dispersion-reaction equation are studied along with a Neural Network approach. The
first inverse problem concerns the estimation of the reaction parameter in an homogeneous equation,
and the second one concerns the estimation of source pollution location in the non-homogeneous
case. Both inverse problems are solved by two multiplayer perceptron networks: the usual Artificial
Neural Network (ANN) and the Physics-Informed Neural Network (PINN), which is a special type
of neural network that includes the physical laws that describes the phenomena in its formulation .
Numerical experiments related to both inverse problems with ANN and with PINN are presented,
demonstrating the feasibility of the proposed approach.
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1 Introduction

Over the last centuries, with the development of industrial production, starting with the in-
dustrial revolution, the world was capable of producing in larger quantities, improving the quality
process, and reducing the time of goods production. However, with this increasing industrial pro-
cess, pollution has also increased, generating, in many cases, contaminants in the air, soil, and
water. Unfortunately, the leakage of pollutants into bodies of water like rivers, lakes, or oceans is
a common occurrence nowadays. Here we consider the model posed by the advection-dispersion-
reaction equation, which allows the computation of the concentration of a pollutant in a river.

In this context, the area of inverse problems emerges as a tool in the study of these leakages
which is instrumental in the prevention and/or design and planning of remediation measures to
reduce their impact. For example, when it is observed that there is a pollutant in some region
of the river, it is important to understand two problems, the one of study how this concentra-
tion is evolving along the river and also discover the starting location of the leakage. In the
Inverse Problem framework, the first problem translates to estimating the reaction parameter of
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the advection-dispersion-reaction equation based on synthetic concentration measurements from
sensors. In the second problem, based on concentration measurements, we are interested in deter-
mining the location of the pollution source, [4] and [2]. These kind of inverse problems are posed in
contrast with the so-called direct problems [7]. In the examples above, the direct problems, given
the parameters of the medium (in the first problem) and also the source location (in the second
problem), concerns estimating the pollution concentration in any region of the river at any time.
In this work, we study two inverse problems in the context of pollutant dispersion in a river: the
parameter and the source location estimation.

In both cases, a new kind of Neural Network is employed to solve the inverse problems, namely
the Physics-Informed Neural Network (PINN). The PINN is a type of neural network introduced in
a recent work [8] that takes into account the physical laws that describe the phenomena involved,
along with the process of training to solve some learning tasks. The PINN modifies the mean
squared error loss by adding a term representing the physical laws of the model through linear or
non-linear Partial Differential Equations (PDE’s), where the derivatives with respect to parameters
of the network are computed using Automatic Differentiation [3]. In other words, the PINN can be
training via gradient descent methods by applying the chain rule to differentiate compositions of
functions using the automatic differentiation technique to compute the gradient at each iteration.

In Section 2, we consider the formulation of direct and inverse problems for the pollutant
concentration computation for both problems: the reaction coefficient determination and the source
determination, respectively. Section 3 is devoted to the presentation of main ideas of the PINN and
also the formulation of the PINN for both inverse problems. In Section 4, we present numerical
experiments related to the parameter estimation of the reaction term in the advection-dispersion-
reaction equation, as well as the source location estimation of the source term. Conclusions are
described in Section 5.

2 The Pollutant Dispersion Direct and Inverse Problems

In this section, we establish the direct and inverse problem formulations for estimation of the
reaction coefficient and the pollution source location, respectively.

Consider the following one-dimensional transient problem:
∂tc−D∂xxc+ V ∂xc+Rc = F (x, t), for x ∈ (0, L), t ∈ (0, T )
c(x, 0) = g0(x), for x ∈ [0, L]
c(0, t) = gl, for t ∈ (0, T ]
c(L, t) = gr, for t ∈ (0, T ],

(1)

where ∂t, ∂x and ∂xx represent the partial derivatives of concentration c [g/m3] with respect to
time, t [s], and space x [m], respectively. Beside this, L [m] is the length of the domain, D [m2/s]
is the dispersion coefficient, V [m/s] is the velocity, R [1/s] is the reaction coefficient, F is the
source term, g0 is the initial concentration and gl and gr are the known concentration values at
the boundary, in which the compatibility conditions gl(0) = g0(0) and gr(0) = g0(L) hold. This
problem has a unique solution, provided that u, g0, gl andgr belong to appropriated function
spaces, see for example [5].

2.1 The Reaction Parameter Estimation Problem

Considering Eq. (1), with F (x, t) = 0, the Direct Problem is posed as: given the medium
parameters D,V and R, the initial and boundary conditions, we must find the concentration
solution c(z), for all z = (x, t) ∈ (0, L)× (0, T ].
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On the other hand, the Inverse Problem of Parameter Estimation studied here is posed as: given
the medium parameters of dispersion and velocity in Eq. (1), D and V , the initial and boundary
conditions g0, gl and gr, and some measurements of concentrations from sensors, we are interested
in determining the reaction parameter, R.

2.2 The Source Location Estimation Problem

Consider the problem (1), with

F (x, t) = λ1

(
e−(x−λ2)

2
)
, with 0 < λ2 < L, (2)

where λ1 > 0 is the intensity of the source pollutant concentration and λ2 ∈ [0, L] is the source
location. This kind of source represents a continuous punctual leakage scenario concentrated in
position λ2 and with decreasing intensity when we analyse a position far away of λ2. The Direct
Problem for (1) is posed as: given the vector of parameters λ = (λ1, λ2), we must to find the
solution cλ(x, t). Here we consider that the intensity is the same for all possible locations.

3 The Physics-Informed Neural Network Approach

As mentioned in the Introduction, the recently developed Physics-Informed Neural Network
(PINN) defines an optimization process, in which the weights and biases minimizes a special
modified loss function that takes the physical laws relevant to the problem in consideration.

In this section, we present the main ideas about the PINN, and how we use them to solve the
inverse problem of parameter estimation and the other of source location estimation.

First, we point out the main differences between construct an usual Artificial Neural Network
and a Physics-Informed Neural Network.

The ANN is composed by a collection of neurons (or nodes) distributed in layers that apply
different transformations on their inputs. This neurons are weighted to adjust the training process.
The aim in the training phase of an ANN is to find a set of optimal weights that minimizes the
error between the prediction (output) and the target values.

The main difference between the ANN and the PINN are the target values. In the ANN, we
provide a list of target values that are used for tunning the parameters of the net in the loss
function of Mean Squared Error type. On the other hand, in the PINN, there are no target values
because we are interested in minimizing a new loss function that incorporates the physics of the
problem through the differential equation that govern the observed data [8].

Consider the both problems in the pollutant dispersion in a river, posed by Eq. (1). Observe
that we have information about the pollutant concentration initially (with the function g0(x)) and
on the boundary (with the functions gl(z) and gr(z)). Furthermore, in the inverse problem context,
we can suppose that, after the pollutant leakage, we have information about the concentration from
observational data provided by sensors distributed along the river. Correlated to this data from
sensors there is a reaction parameter (unknown) Rs that we are interested in estimating, in the
first problem, where we consider the homogeneous equation. In the second problem, correlated to
a corresponding observational data from sensors, there is a (unknown) source location λs, that we
are interested in estimating, where we conside the non-homogeneous equation.

Let us take into account an ANN whose inputs are the nodes (zi), for i = 1, 2, . . . , Nd. We
observe that the set of points {zi}Nd

i=1 can be seen as the collection:

{zi}Nd

i=1 =
{
z0i
}N0

i=1

⋃{
zbi
}Nb

i=1

⋃
{zsi }

Ns

i=1 , (3)
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where N0, Nb and Ns correspond to the number of domain points that generate the initial condition,
boundary conditions and sensor measurements, respectively. So, the total number of domain
points, Nd, can be view as the sum Nd = N0 +Nb +Ns. Observe that the splitting in Eq.(3) will
generate different terms in the loss function definition. Besides, the targets are the corresponding
concentrations already known by the problem, that is, the initial condition c(z0i ) = c(x0

i , 0) =
g0(xi), for i = 1, 2, . . . N0, the boundary conditions

c(zbi ) = c(xb
i , t

b
i ) =

{
gl(t

b
i ), if xb

i = 0
gr(t

b
i ), if xb

i = L,

and the sensors measurements cs(z
s
i , Rs), for i = 1, 2, . . . Ns (analogously to the case cs(z

s
i , λs)) .

The output of this ANN is the function cNN (zi, θ), where θ is the vector of all parameters of the
network.

Therefore, the loss function, Ld(θ), of Mean Squared Error (MSE) type for the ANN, uses only
the data from the problem and from the sensors and is given by Ld(θ) = L0(θ) + Lb(θ) + Ls(θ),
that is,

Ld(θ) =
1

N0

N0∑
i=1

|cNN (z0i , θ)−g0(xi)|2+
1

Nb

Nb∑
i=1

|cNN (zbi , θ)−c(zbi )|2+
1

Ns

Ns∑
i=1

|cNN (zsi , θ)−cs(z
s
i , Rs)|2.

(4)
For the purpose of defining the new loss function for the PINN case, we need to define the

following functional, namely residue of Eq. (1):

R(u) := ∂tu−D∂xxu+ V ∂xu+Ru− F (x, t), (5)

where u is an appropriated function. In the first problem, the corresponding functional is given by
R1(u,R), with F (x, t) = 0 and R > 0 a constant. The second problem, we have the corresponding
functional given by R2(u, λ), with F (x, t) = e−(x−λ)2 and λ a constant. In a general way, we note
that if R(c) = 0, then we say that u = c is a solution (general) of the PDE in Eq. (1), with known
values for the parameters D, V , R and λ.

Since we are approximating the pollutant concentration solution by a neural network cNN (z, θ),
then it will result in a different approximation by a neural network for R, namely a Physics-
Informed Neural Network (PINN) [8]. This method involves training a neural network to approxi-
mate the concentration data in Eq.(4), and, simultaneously, the solution of the PDE in Eq. (1) by
minimizing a new loss function that incorporates the residue given by Eq.(5) in a new summation
term.

It is important to point out that we are assuming that both in the neural networks’ output
cNN and in the residue R(cNN , R) (for first problem) or R(cNN , λ) (for second problem), the set
of parameters θ is the same. So, in the first problem, for example, the parameters (θ,R) can be
optimized by minimizing the new loss function, L(θ,R), defined by L(θ,R) = Ld(θ) + Lr(θ,R),
where Ld(θ) is the loss term due to the data, given by Eq.(4), and Lr(θ,R) is the loss term due to
the residue, defined by

Lr(θ,R) =
1

Nr

Nr∑
i=1

|R1(cNN (zri , θ), R)|2, (6)

where R1(cNN (zri , θ), R) is given by (5) for the first problem, substituting u by cNN (zri , θ) and
{zri }

Nr
i=1 are collocation points distributed over the entire domain. In a similar way, we can define

the new loss term L(θ, λ) for the second problem.
We observe, that for the PINN case, we append a new set of points: the collocation points.

The collocation points are chosen so that the approximation to the solution satisfies the differential
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equation at those points. With this new set of points, we have the following

{zi}Nd

i=1 =
{
z0i
}N0

i=1

⋃{
zbi
}Nb

i=1

⋃
{zsi }

Ns

i=1

⋃
{zri }

Nr

i=1 . (7)

This approach for the construction of the loss function is slightly different from that presented
in [8], in which it only considers the data from sensor measurements in the loss term due to the data.
In this work, we consider, besides the sensor measurements, the data from initial and boundary
conditions in the corresponding loss term.

4 Numerical Experiments

In this section, we present numerical experiments related to both problems, the reaction pa-
rameter estimation and the source location estimation with PINN. We consider the same PDE
parameters, domain and initial and boundary conditions in the two problems. The PINN was
implemented in the Python language using the well known open-source library for machine learn-
ing, TensorFlow [1]. However, in view of limited CPU, we choose to use the Google Colab, which
is a way of writing and executing Python codes directly in the internet browser, even without
any Python software installed in the computer, and with access to GPUs free of charges in a free
account5.

4.1 The Reaction Parameter Estimation

In this subsection, we implement the reaction parameter estimation with PINN. In Tables 1
and 2, we consider only the network with 4 hidden layers because this architecture generated
better results.

In Table 1, we consider the parameter estimation problem solved by different number of
neurons, activation function as the Leaky RELu function, with slope α = 0.1, Nx = 50 and
Nt = 50 equally spaced points in the entire domain [0, L] × [0, T ], and Nr = 1000 collocation
points sampled from the domain. In all experiments, we use ADAM optimizer [6], with learning
rate varying accordingly of number of epochs in the following way δ(n) = 0.1(1−H(n− 2000)) +
0.01(H(n−2000)−H(n−4000))+0.001H(n−4000), where H(n) = 0, for n < 0, and H(n) = 1, for
n ≥ 0, is the Heaviside or step function. The number of epochs is fixed in 5000 and the initial guess
of R(0) = 0.5 s−1, the median value of the range considered for the reaction parameter [0, 1 s−1].
We observe that the best estimation was obtained considering 40 neurons. Therefore, in the next
experiment, we will consider only networks of 4 layers with 40 neurons.

Table 1: Estimation of the Reaction Parameter with the PINN - 4 Layers and variable number of
neurons - Noiseless data - Ns = 50, N0 = Nb = 50, Nr = 1000
Layers Neurons Exact Parameter Predicted Parameter Standard Deviation Rel. Error

4 20 0.3 0.25128 0.14861 16.24 %
4 30 0.3 0.33838 0.029058 12.79 %
4 40 0.3 0.29732 0.045473 0.89 %
4 50 0.3 0.18453 0.032688 38.49 %

In Table 2, we consider noisy measurements. The noise, σ, is introduced here in the same way
as in the ANN case, that is, cs(zs, Rs) + ϵ, ϵ ∼ N(0, σ2).

5https://colab.research.google.com/
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Table 2: Estimation of the Reaction Parameter with the PINN - 4 Layers and 40 neurons - Data
with different levels of noise - Ns = 50, N0 = Nb = 50, Nr = 1000

Noise Exact Parameter Predicted Parameter Standard Deviation Rel. Error
0.0 % 0.3 0.29732 0.045473 0.89 %
0.1 % 0.3 0.30550 0.056082 1.83 %
0.5 % 0.3 0.30988 0.031200 3.29 %
1 % 0.3 0.26628 0.049348 11.24 %

4.2 The Source Location Estimation

In this subsection, we implement the source location estimation from the PINN. In the following
tables, we only consider networks with 4 layers, in view of this number of layers already generated
good results. We also consider as activation functions the Leaky RELu, with slope α = 0.1. In
all experiments, we use ADAM optimizer with learning rate varying accordingly of epoch of the
following way δ(n) = 0.01(1−H(n−1000))+0.001(H(n−1000)−H(n−2000))+0.0001H(n−2000).
The number of epoch is fixed in 3000 and the initial guess of λ2 = 5.0.

In Tables 3 and 1, we consider different numbers of measurements from sensors and different
numbers of neurons to verify the accuracy of the method.

In the Table 3, we sampled 1000 collocation points from the entire domain and 50 points from
the x-direction and 50 from t-direction. Beside this, we note that the network architecture with 4
layers and 40 neurons generated better results.

Table 3: Estimation of Pollutant Source Location with the PINN - 4 Layers and variable number
of neurons - Noiseless data - Ns = 50, N0 = Nb = 50, Nr = 1000
Layers Neurons Exact Location Predicted Location Standard Deviation Rel. Error (%)

4 20 3.7 3.6694 0.00810 0.83
4 40 3.7 3.6777 0.05991 0.60
4 60 3.7 3.6645 0.02770 0.96

In Table 4, we keep all the features from table 3, bur now considering the noise effect. The
network architecture considered here is the 4 layers with 40 neurons. We note that all the results
for PINN can reconstruct the location even in presence of noise in the measurements from sensors.

Table 4: Estimation of Source Location with the PINN - 4 Layers and 40 neurons - Data with
different levels of noise - Ns = 50, N0 = Nb = 50, Nr = 1000

Noise (%) Exact Location Predicted Location Standard Deviation Rel. Error (%)
0.0 3.7 3.6777 0.05991 0.600
0.1 3.7 3.6779 0.00958 0.598
0.5 3.7 3.6749 0.01456 0.678
1 3.7 3.6651 0.03802 0.945

5 Conclusions

In this work, we study two inverse problems, the the reaction parameter estimation and the
source location estimation in the advection-dispersion-reaction equation modelling the pollutant
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concentration in a river. These inverse problems were solved by using a new kind of neural network,
namely Physics-Informed Neural Networks.

The direct problems were solved by classical numerical methods with the goal of generating a
dataset to be used in the neural network approach for the inverse problem.

The inverse problems were solved with the PINN. We observed that, despite considering the
noisy measurements, it proved to reconstruct the reaction parameter as well as the pollutant source
location both with a low relative error.
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