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We study a Lagragian formulation (following [1], [2] and [3] ) of the incompressible Euler
equations on a domain Td . The Euler equations with transport noise model the flow of an
incompressible inviscid fluid and are (classically) formulated in terms of a divergence–free vector
field u (i.e. ∇ · u = 0) as follows:

dut + (ut · ∇ut +∇pt)dt+
∑
k

L∗
σkut ◦ dW k

t = 0 (1)

where p is a scalar potential representing internal pressure, L∗
σju := σj · ∇u +

(
∇σj

)∗
u (L

is the Lie derivative ), W k
t is a Wiener process and the integration is in the Stratonovich sense.

The divergence-free condition reflects the incompressibility constraint. Equations related to fluid
dynamics with multiplicative noise appeared in several other works, see for instance [4], [5],[2], [6],
[7] and many others.

The main topic of this work, namely the Euler-Lagrangian formulation, called also Constantin-
Iyer representation after [1], [8], among related works, see for instance [9], [10], [11]. First we show
the Euler-Lagrangian formulation is equivalent to the stochastic Euler equations (1), see Proposi-
tion 0.1, the proof is based in Ito-Wentzell-Kunita formula and stochastic analysis techniques. We
point that in [2] the authors show that the Lagrangian formulation verifies necessarily the equation
(1), for d = 3, using the vorticity equation. We show that both formulations are equivalent for
any dimension. Using this formulation we prove a local in time existence result for solutions in
C0([0, T ] ; (Hs(Td)d)) with s > d

2 + 1, new for equation (1).
The main result are the following theorems.

Theorem 0.1. Assume that u is C3,α-continuos semimartingale. Then u is solution of the equation
(1) if and only if verifies the Lagrangian formulation

dXt =
∑

j σ
j(Xt) ◦ dW j

t + ut(Xt)dt (2)
ut(x) = P [(∇At)

∗u0(At)] (x), (3)

where ∗ means the transposition of matrices and denote the back-to-labels map A by setting
A (·, t) = X−1 (·, t).

Theorem 0.2. If d ≥ 2, s > d
2 + 1 and u0 ∈ Hs is divergence free then there exists T (ω) > 0,

such that the systems

∂tv + (ũ · ∇)v = 0 (4)
ut(x) = P [(∇At)

∗u0(At)] (x), (5)
1j209372@dac.unicamp.br
2colivera@unicamp.br

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 10, n. 1, 2023.

Trabalho apresentado no XLII CNMAC, Universidade Federal de Mato Grosso do Sul - Bonito - MS, 2023

010215-1 © 2023 SBMAC



2

with initial condition
u(x, 0) = v(x, 0) = u0(x). (6)

has solution u ∈ C0([0, T ] ; (Hs(Td)d))
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