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In the last few years, there happened a significant increasing of solar energy generation so as by
photovoltaics plants as by residences with board photovoltaic instaled on the roofs. This is mainly
due to intereset of the society and governments for clean and renewable energies that reduces the
amount of C02 emission. Do to this, to each day more photovoltaic plants are being connected to
the electrical systems of the cities. However, according [1] and [2], this may causes instability to
the grid, making it the greatest challenge to the industry.

A way to approach this issue is by modeling the solar energy generation and developing stra-
tegies for forecasting the solar energy that will be generated in the next few days. In this way, be
able to balance the generated energy with the demand for electricity in the cities through efficient
grid transmission with low wasting and low cost. Under this scenery, we propose a nonparametric
Bayesian approach for modeling solar energy and making predictions.

Since the solar power generated in a day present a nonlinear unstable behaviour, our approach
is based on the assumption that the recorded values are around a nonlinear continuous function
f(t) that indicates the tendency of the values, where t denotes the time instant of the day that
measure were recorded. That is, we assume that the solar power generated Yt is modelled by the
following additive model Y = f(t) + ε, where f(t) is nonlinear function and ε is a random error.
However, in opposite to setting up f(t) as a known mathematical function with a fixed number of
parameters, such as a polynomial function, we consider f(t) to be an unknown quantity that must
be estimated from observed data.

Then, in order to make inference on f(·), we assume that a priori a n-dimensional vector of
function values evaluated at n points f = (f(1), . . . , f(n)) is generated according to a Gaussian
process. This means that a priori we are estimating f(·) by “smooth functions” obtained by the
generation of values of a multivariate normal distribution and linking the generated points by lines.
To complete our Bayesian approach, we put prior distributions for the parameters of the Gaussian
process and for the variance of the random errors in order to get the following hierarchical model
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where Nn(·) represents the n-variate Gaussian distribution, GP(·) represents a Gaussian process,
IG(·) represents the inverse Gamma distribution and IW

(
γ, σ2

fAν

)
represents the inverse-Wishart

distribution with parameters γ and σ2
fAν , being Aν a matrix of dimension n × n with elements

k(t, t′), I is the identity matrix of dimension n and constants a, b, γ and σ2
f are known hiperpara-

meters, for t, t′ = 1, . . . , n. In addition, we assume that each term k(t, t′) is calculated according
to the squared exponential kernel, i.e.,

k(t, t′) = σ2
fd
exp

{
− (t− t′)2

2ν2

}
, (2)

for t, t′ = 1, . . . , n. We fix a = b = 0.1, γ = 1 and σ2
f = 100 in order to get noninformative prior

distributions. To complete this hierarchical Bayesian model, we point out some reasons that led
us to consider this structure of prior distributions. The option for the Inverse-Gamma distribution
for σ2 lies in the fact of this is a natural conjugated prior. Analogously, the inverse Wishart
distribution is the natural conjugated prior for Σf .

Since the joint posterior distribution for the parameters of interest does not have a known
mathematical form, we got the conditional posterior distributions and developed an MCMC algo-
rithm to get the parameter estimates. The MCMC algorithm is a Gibbs sampling algorithm that
iteratively generates values from the following conditional posterior distributions
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)
(4)

Σf |f , σ2
fAν , γ ∼ IW(γ + n+ 1,ffT + σ2

f ,Aν) (5)

The performance of the proposed modeling is illustrated in a case study, in which, in which,
we model the solar energy generated by a plant installed in the location (-20.510867, -54.619882),
Faculty of Veterinary Medicine and Animal Science (FAMEZ) of the Federal university of Mato
Grosso do Sul, in a period of d = 100 days. As result, the proposed approach has presented an
average mean square error (MSE) of 0.0005 in relation to the estimated values, and an average
MSE value of 0.0004 in relation to the predicted values.

Three advantages of the proposed modeling are:

(i) the modeling is very flexible and adapts to the number of recorded values in a day;

(ii) The fitted model is obtained in a direct way and does not need the development of model
comparison, as is usually done when a parametric approach is considered;

(iii) The inference process is done based on a Metropolis-Hastings within Gibbs sampling algo-
rithm that can be easily implemented in free software like R or WinBUGS.
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