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1 Introduction

The notion of metric-entropy was created by Kolmogorov aiming to classify compact metrics
sets according to their “massivity” has found several applications in many areas of Mathematics.
In particular, we highlight that the connection between entropy quantities and bounded linear
operators on Banach spaces, is one of the main features of the Statistical Learning Theory [1].
Moreover, DPKs are very popular in Learning Theory (see [2], for instance) and certainly the
most important feature of these kernels is the fact that the class of DPKs includes the prominent
Gaussian kernel. In Learning Theory, in order to estimate the error between the empirical target
function and the target function (belonging to an RKHS), metric entropies quantities such as ϵ-
entropy are needed in various ways ([3]). Here, we aim the lower bounds of the ϵ-entropy for the
embedding, IK : HK → C(Sm), of the unit ball of a dot product kernel Hilbert space (DPKHS)
into the space of continuous functions on the unit sphere of Rm+1.

Recall that, for a metric space X = (X, d) and S ⊂ C, we say that Uϵ is an ϵ-cover for S if,
for all x ∈ S, there is an u ∈ Uϵ such that d(x, u) < ϵ. The ϵ-covering number of S, denoted by
N (ϵ, S) = N (ϵ, S, d) is defined as the size of the smallest ϵ-cover of S. The nth entropy number of
S is defined by

en(S) = en(S, d) = inf{ϵ > 0; N (ϵ, S) ≤ n}. (1)

The (Kolmogorov) ϵ- entropy, denoted by K(ϵ, S) = K(ϵ, S, d), in turn, is also defined in terms of
the N (ϵ, S) by

K(ϵ, S) = log(N (ϵ, S)). (2)

Above and throughout this note, log denotes the natural logarithm.

2 Dot product kernels (DPK) and its RKHS

Let {bn} be a summable sequence of positive numbers. The symbol · stands for the usual inner
product of Rm+1. Let Sm (m ≥ 2) be the unit sphere in Rm+1 endowed with its induced Lebesgue
measure σm and write L2(Sm) := L2(Sm, σm). Kernels of the form

K(x, y) =

∞∑
k=1

bk(x · y)k, x, y ∈ Sm, (3)
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with
∑∞

k=1 bk < ∞, are called dot product kernels (DPK) on Sm. Clearly, K is continuous. Also,
it is positive definite, that is,

∑N
i,j=1 cicjK(xi, xj) ≥ 0, for all N > 1, and every ci, cj ∈ R , and

xi, xj ∈ Sm. The theory of RKHS ensures that there exists a unique Hilbert space HK of functions
on Sm (called reproducing kernel Hilbert - RKHS) for which all linear evaluation functionals
Fx(f) := f(x), f ∈ HK , x ∈ X are continuous. From the results obtained in [4] for the (compact)
integral operator T : L2(Sm) → L2(Sm)

T (f)(x) =

∫
Sm

( ∞∑
k=1

bk(x · y)k
)
f(y) dσm(y), x ∈ Sm, f ∈ L2(Sm), (4)

under certain assumption on the sequence {bn} and via tools from harmonic analysis we are able
to characterize the HK .

3 Estimating the ϵ-entropy
Let X and Y be Banach spaces with unit balls given by BX and BY , respectively. For ϵ > 0,

the covering numbers of an operator T : X → Y are defined as

N (ϵ, T ) = N (ϵ, T (BX)) := min

n ∈ N : ∃ y1, ..., yn ∈ Y s.t. T (BX) ⊂
n⋃

j=1

(yj + ϵBY )

 . (5)

The (Kolmogorov) ϵ-entropy of an operator T : X → Y is then defined as

K(ϵ, T ) = K(ϵ, T (BX)) := log(N (ϵ, T )). (6)

A lower bound for the ϵ-entropy of the embedding IK : HK → C(Sm) is describe in the following
theorem.

Theorem 3.1. There exist A > 0 with the following property: for any ϵ > 0 sufficiently small,

K(ϵ, IK) ≥ A

(
log
(
1
ϵ

))m+1(
log
(
log
(
1
ϵ

)))m , (7)

holds true.
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