Symmetric Measures and Associated Orthogonal Polynomials Obtained from Modified Positive Chain Sequences

Daniel O. Veronese ${ }^{1}$
UFTM-ICTE, Uberaba, MG

Given a nontrivial positive measure φ (i.e., a Borel measure with infinite support), we say that $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ is the sequence of monic orthogonal polynomials on the real line (MOPRL, in short) associated with φ, if $P_{n}(x)$ is a monic polynomial of degree n satisfying

$$
\begin{equation*}
\int_{\mathbb{R}} x^{j} P_{n}(x) d \varphi(x)=\delta_{n, j} \rho_{n}, \quad 0 \leq j \leq n \tag{1}
\end{equation*}
$$

where $\delta_{n, j}$ is the Kronecker delta and $\rho_{n} \neq 0$ for $n \geq 0$.
It is well known (see [1] and [2]) that the polynomials $P_{n}(x), n \geq 0$, satisfy the three-term recurrence relation

$$
\begin{equation*}
P_{n+1}(x)=\left(x-\beta_{n+1}^{\varphi}\right) P_{n}(x)-\alpha_{n+1}^{\varphi} P_{n-1}(x), \quad n \geq 1, \tag{2}
\end{equation*}
$$

with $P_{0}(x)=1$ and $P_{1}(x)=x-\beta_{1}^{\varphi}$. Moreover, the coefficients in (2) can be given as follows

$$
\begin{equation*}
\beta_{n}^{\varphi}=\frac{\int_{\mathbb{R}} x P_{n-1}^{2}(x) d \varphi(x)}{\int_{\mathbb{R}} P_{n-1}^{2}(x) d \varphi(x)} \quad \text { and } \quad \alpha_{n+1}^{\varphi}=\frac{\int_{\mathbb{R}} P_{n}^{2}(x) d \varphi(x)}{\int_{\mathbb{R}} P_{n-1}^{2}(x) d \varphi(x)}, \quad n \geq 1 \tag{3}
\end{equation*}
$$

We say that the nontrivial positive measure φ is symmetric when the following identity holds

$$
\begin{equation*}
d \varphi(x)=-d \varphi(-x), \quad x \in \mathbb{R} \tag{4}
\end{equation*}
$$

In this case, it is well known that the coefficients $\beta_{n}^{\varphi}, n \geq 1$, are equal to zero, and therefore, the MOPRL associated with φ only depends on $\alpha_{n+1}^{\varphi}, n \geq 1$. Another well known result is that, when $\operatorname{supp}(\varphi) \subset[-1,1]$, the sequence $\left\{\alpha_{n+1}^{\varphi}\right\}_{n=0}^{\infty}$ is a positive chain sequence.

Following [3], a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a positive chain sequence if there exists another sequence, say $\left\{g_{n}\right\}_{n=0}^{\infty}$, with $0 \leq g_{0}<1$, and $0<g_{n}<1, n \geq 1$, such that

$$
a_{n}=\left(1-g_{n-1}\right) g_{n}, \quad n \geq 1
$$

The sequence $\left\{g_{n}\right\}_{n=0}^{\infty}$ is called a parameter sequence for $\left\{a_{n}\right\}_{n=1}^{\infty}$. The minimal parameter sequence $\left\{m_{n}\right\}_{n=0}^{\infty}$ for $\left\{a_{n}\right\}_{n=1}^{\infty}$ is the one that satisfy $m_{0}=0$. On the other hand, the maximal parameter sequence $\left\{M_{n}\right\}_{n=0}^{\infty}$ is the one that satisfy $g_{n} \leq M_{n}, n \geq 0$, for any parameter sequence $\left\{g_{n}\right\}_{n=0}^{\infty}$.

In the last years, positive chain sequences have been also applied to the study of orthogonal polynomials on the unit circle and corresponding nontrivial measures. As an example, we can cite [4] and [5].

[^0]In the present study, we initially consider a symmetric nontrivial positive measure for which the associated sequence $\left\{\alpha_{n+1}^{\varphi}\right\}_{n=0}^{\infty}$ that appears in (2) is a nonsingle positive parameter chain sequence. It means that its minimal parameter sequence differs from its maximal parameter sequence.

Then, the maximal parameter sequence $\left\{M_{n}^{\varphi}\right\}_{n=0}^{\infty}$ for $\left\{\alpha_{n+1}^{\varphi}\right\}_{n=0}^{\infty}$ is such that

$$
\alpha_{n+1}^{\varphi}=\left(1-M_{n-1}^{\varphi}\right) M_{n}^{\varphi}, \quad n \geq 1,
$$

with $M_{0}^{\varphi}>0$.
In this work we analyze the behaviour of the nontrivial positive measure $\hat{\varphi}$ for which the associated orthogonal polynomials $\left\{\hat{P}_{n}(x)\right\}_{n=0}^{\infty}$ are such that the coefficients in the three-term recurrence relation satisfy

$$
\begin{equation*}
\alpha_{n+1}^{\hat{\varphi}}=\left(1-g_{n-1}^{\hat{\varphi}}\right) g_{n}^{\hat{\varphi}}, \quad n \geq 1, \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
g_{2 n}^{\hat{\varphi}}=1-M_{2 n}^{\varphi} \quad \text { and } \quad g_{2 n+1}^{\varphi}=M_{2 n+1}^{\varphi}, \quad n \geq 0 \tag{6}
\end{equation*}
$$

We show that $\hat{\varphi}$ and φ are connected by the following identity

$$
\begin{equation*}
d \hat{\varphi}(x)=\left(\frac{x^{2}-1}{x|x|}\right) d \varphi\left(\sqrt{1-x^{2}}\right), \quad x \in[-1,0) \cup(0,1] . \tag{7}
\end{equation*}
$$

Moreover, it is shown that the mass of $\hat{\varphi}$ at $x=0$ is equal to zero. Thus, if the measure φ is known, the relation (7) provides the complete information regarding $\hat{\varphi}$.

As a consequence, from (5), (6) and (7), we get a procedure to generate new examples of symmetric orthogonal polynomials on the real line with coefficients explicitly given.

Finally, we provide conditions in order to guarantee that the new parameter sequence $\left\{g_{n}^{\hat{\varphi}}\right\}_{n=0}^{\infty}$ (generated from $\left\{M_{n}^{\varphi}\right\}_{n=0}^{\infty}$) will also be the maximal parameter sequence for $\left\{\alpha_{n+1}^{\hat{\varphi}}\right\}_{n=0}^{\infty}$. Namely, it is possible to show that $\left\{g_{n}^{\hat{\varphi}}\right\}_{n=0}^{\infty}$ is the maximal parameter sequence for $\left\{\alpha_{n+1}^{\hat{\varphi}}\right\}_{n=0}^{\infty}$ if and only if φ has no mass at $x=0$.

References

[1] T. S. Chihara. An Introduction to Orthogonal Polynomials. Mathematics and its Applications Series. Gordon and Breach, 1978. ISBN: 978-0-677-04150-6.
[2] M. E. H. Ismail. Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Application. Cambridge Univ. Press, 2005. ISBN: 978-0-521-78201-2.
[3] T. S. Chihara. "Chain Sequences and Orthogonal Polynomials". In: Transactions of the American Mathematical Society 104 (1962), pp. 1-16. DOI: 10.2307/1993928.
[4] M. S. Costa, H. M. Felix, and A. Sri Ranga. "Orthogonal polynomials on the unit circle and chain sequences". In: Journal of Approximation Theory 173 (2013), pp. 1-20. DOI: 10.1016/j.jat.2013.04.009.
[5] D. O. Veronese. "Orthogonal Polynomials and Quadrature Rules on the Unit Circle Associated with Perturbations of Symmetric Measures". In: Journal of Computational and Applied Mathematics 375 (2020), pp. 1-20. DOI: 10.1016/j.cam. 2020.112808.

[^0]: ${ }^{1}$ daniel.veronese@uftm.edu.br

