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A signed graph G is a triple G = (V,E, s) where V is the vertex set, E is the set of undirected
edges and s : E → {+,−} is a function that assigns a sign to each edge in E. Thus, E can be
partitioned in two disjoint sets E+ and E−, such that E+ = {e ∈ E : s(e) = +} and E− = {e ∈
E : s(e) = −} and E+ ∪ E− = E. We allow multiple edges in G as long as they have different
signs. For convenience, denote by E+ ∩ E− the set of multiple edges in E[1].

Let E(S), for S ⊂ V , be the set of edges with both endpoints in S. We say that a signed graph
is balanced if V can be partitioned in U and Ū in such a way that E+ = E(U) ∪ E(Ū) and E−

is the cut [U, Ū ], that is all negative edges have one endpoint in U and the other one in Ū . The
Balanced Induced Subgraph Problem (BIS) consists in, given a signed graph G = (V,E, s)
with weights w(v) for all v ∈ V , finding a balanced induced subgraph of G that maximizes the
sum of weights of its vertices.

The notion of balance for signed graphs was firstly suggested in [2] to model certain concepts
from problems in social psychology. In addition to being employed in the context of social networks,
it has also been used to found problems from diverse areas such as finance [3, 4], document
clustering [5] and biology [6]. In [2], the authors also provide some useful characterizations, such
as the one that follows.

We say that a cycle C ⊂ G is a negative cycle if it includes an odd number of negative edges,
otherwise we call it a positive cycle. Denote C−(E) the set of all negative cycles of G. A signed
graph is balanced if and only if it does not contain negative cycles This characterization inspires
the following formulation for the BIS problem:

max
∑
u∈V

w(u)xu s.a.
∑
u∈C

xu ≤ |C| − 1 ∀C ∈ C−(E), x ∈ {0, 1}|V |.

For every W ⊂ V , denote by xW ∈ R|V | the vector such that xW
u = 1 if u ∈ W , and xW

u = 0
otherwise. We study the polytope PG defined as:

PG = conv{xW ∈ R|V | : W ⊂ V, G[W ] is balanced },

where G[W ] = (W,E(W ), s). This is called the Balanced Induced Subgraph Polytope [7].
That being said, our first result is stated next;

Theorem. Let C ⊂ C−(E). The negative cycle inequality
∑

u∈C xu ≤ |C| − 1 defines a facet of
PG if and only if G[C] is chordless and for all v ∈ V \C there is x ∈ C such that G[C \ {x} ∪ {v}]
is balanced.

It should be mentioned that necessary and sufficient conditions for the negative cycle inequality
to be facet-defining were previously presented in [1, 7]. However, we could prove that they are
only necessary conditions.
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Now, consider the following statement equivalent to BIS: starting from V , we want to remove
the least amount of vertices to make G balanced. With this in mind, we propose a set covering
formulation for BIS. For all u ∈ V , define yu ∈ {0, 1}|V | such that yu = 1 if we remove u from G,
and yu = 0 otherwise. We obtain

min
∑
u∈V

w(u)yu s.a.
∑
u∈C

yu ≥ 1 ∀C ∈ C−(E), y ∈ {0, 1}|V |.

Similarly, for all S ∈ V , denote by yS ∈ R|V | the vector such that ySu = 1 if u ∈ S, and ySu = 0
otherwise. Let P̂G = conv{yS ∈ R : S ⊂ V, G[V \ S] is balanced }.

Since yu = 1− xu for all u ∈ V , there exists an affine transformation from PG to P̂G, and vice
versa, hence each facet of PG has a corresponding facet in P̂G.

For example, the following statement holds:

Corollary. Let C ⊂ C−(E). Then inequality
∑

u∈C yu ≥ 1 defines a facet of P̂G if and only if
G[C] is chordless and for all v ∈ V \ C there is x ∈ C such that G[C \ {x} ∪ {v}] is balanced.

There are many known facet defining inequalities for set covering problems. For instance, [8–10]
derived all facets with coefficients in {0, 1, 2, 3}. We are currently studying the relation between
these facets and facets of PG, as well as which combinatorial properties of G relate to each known
facet for the set covering problem.

We expect to obtain more facet defining inequalities for PG and P̂G before the conference date,
and also find other interesting structures of signed graphs that relate to the facets of these two
polytopes.
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