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A Physics-informed neural network (PINN) is a deep learning framework for solving partial
differential equations (PDEs). Deep learning is a field of machine learning by multiple levels of
composition [1]. Introduced in the paper [2], the PINNs have since gain attention by its simplicity
and potential efficiency as a general purpose solver for PDEs (see, for instance, [3]). In this work,
we discuss on the application of PINNs to solve the Burgers equation
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where D = (a, b) ⊂ R, ν > 0. A given initial and a Dirichlet boundary conditions are assumed to
close the problem of solving the equation.

Burgers equation is a benchmark problem to test new numerical approaches for solving convec-
tive-diffusive PDEs. Since it has been introduced, it has been applied to the understanding of
turbulent fluids, shock flows, wave propagation in combustion chambers, vehicular traffic move-
ment, acoustic transmission and many other applications [4]. For small values of ν, the convection
term dominates and standard numerical discretization schemes (e.g. Finite Discrete Method, Fi-
nite Volume Method and Finite Element Method) are numerically unstable. The study of the
application of PINNs to solve the Burgers equation for different values of the diffusion coefficient
ν is one of the specific goals of this work.

We assume an Artificial Neural Network (ANN) of the type Multi-layer Perceptron (MLP, [5]).
It has (x, t) ∈ D as inputs and the estimate ũ ≈ u(x, t) as the output. It is denoted as
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where
(
W (l), bbb(l), f (l)

)
is the triple of weights W (l), bias bbb(l) and activation function f (l) in the l-th

layer of the network, l = 1, 2, . . . , nl. Following the PINNs approach, the training of such an ANN
to solve (1) is performed by solving the following minimization problem
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where {(xr,i, tr,i)}Nr
i=1 are Nr selected collocation points x, t ∈ (a, b)× (0, T ] and {(xb,i, tb,i)}Nb

i=1 are
Nb selected initial and boundary points. It is usually necessary to consider a penalty parameter
p to increase the importance of the boundary points on the computation of the loss function, the
functional to be minimized. Moreover, r(x, t) denote the PDE residual, i.e.
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, x ∈ D, t > 0. (4)
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The residual requires the computation of the derivatives of u, both on time t and space x. This
can be performed by finite difference formulae, but they can be also computed directly from the
ANN (2). The comparison from these both approaches is also our goal in the context of solving
(1).

This work is in progress and is intended to contribute on the better understanding of the
advantages and disadvantages of the applications of PINNs to solve convective-diffusive partial
differential equations.
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