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Abstract
In this work we introduce the notion of momentum operator on a family of evolution algebras
indexed by a time-parameter t ≥ 0. Also, we study its spectra in the case of finte-dimensional
evolution algebra. Thus, this work is naturally divided into two parts. In the first part we give the
main definitions on (continuous-time) Markov evolution algebras and we present some basic results
on these algebras. For more details on continuous evolution algebras see [6, 7].

In the second part, we introduce the notion of momentum operator on such structures. In [5] the
author study these operator on finite graphs. Then we proceed to determine its spectra in the
context of continuous-time Markov evolution algebras.

Introduction
Evolution algebras were introduced by Tian and Vojtechovsky (see [8]). A special class of such

algebras called continuous evolution algebras and their connection to continuous-time Markov
processes are study in [9]. Its notion has been recently revisited in [6] where this problem is
formulated in terms of differentiable matrix valued functions.

Evolution algebras are nonassociative algebras admitting natural bases for which the only non-
vanishing products arise from the squares of the natural basis elements. A real Markov evolution
algebra arise when its natural basis comes from a nonnegative row stochastic (i.e. Markov) struc-
ture matrix. Continuous-time Markov evolution algebras were redefined in terms of stochastic
semigroups.

Given a finite dimensional (real) vector space E with basis B = {e1, . . . , en}, a family E(t) =
{Et = (E ,m(t))}t≥0 of evolution algebras with multiplication

m(t)(ei ⊗ ej) = ei ·t ej =
{ ∑n

k=1 aik(t)ek, i = j = 1, . . . , n;
0, otherwise;

is a continuous time Markov evolution algebra (CT-Markov EA) if the structure matrices {A(t)}t≥0

(of each Et w.r.t. B) define a standard stochastic semigroup on the finite index set Λ = {1, . . . , n}.
Then, for each t, s ≥ 0:

(i) A(t) is a Markov matrix.

(ii) A(0) = In.
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(iii) A(t+ s) = A(t)A(s) (Chapman-Kolmogorov equation or semigroup property).

(iv) limt→0+ A(t) = A(0) = In componentwise (standard property).

Finite state standard stochastic semigroups are solutions of Backward and Forward Kolmogorov
differential equations

A′(t) = QA(t)

and
A′(t) = A(t)Q.

with initial condition A(0) = In. The unique solution is A(t) = etQ, where Q is a rate matrix of
a continuous-time Markov chain. It also holds A′(0) = Q. Moreover, since det(A(t)) = etr(tQ)

we may conclude that matrices in finite standard stochastic semigroups are nonsingular matrices
belonging to the stochastic group S(n,R).

After these preliminaries we will discuss under which conditions we can define a discrete version
of a momentum operator.
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