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This work deals with a class of higher-order Benjamin-Bona-Mahony (BBM) type equations:

ηt + ηx − γ1ηxxt + γ2ηxxx + δ1ηxxxxt +
3

4
(η2)x + γ(η2)xxx − 7

48
(η2x)x − 1

8
(η3)x = 0. (1)

Introducing appropriate damping mechanisms for the associated linear model of the equation (1),
we study the asymptotic behavior in time of the corresponding damped models. This is done both
in the case of internal and boundary damping. We first address the internal stabilization problem:
consider a periodic domain and introduce a localized damping mechanism acting in the equation.
More precisely, we study the system ηt + ηx − γ1ηtxx + γ2ηxxx + δ1ηtxxxx + Bη = 0 for x ∈ (0, 2π), t > 0

∂r
xη(t, 0) = ∂r

xη(t, 2π), for t > 0, 0 ≤ r ≤ 3,
η(0, x) = η0(x) for x ∈ (0, 2π),

(2)

where r is an integer number, γ1, δ1 > 0 and B : Hs
p(0, 2π) −→ Hs

p(0, 2π) is a bounded linear
operator and Hs

p(0, 2π) denotes the Sobolev space of 2π-periodic functions. Let a ∈ C∞
p (0, 2π) a

nonnegative function on (0, 2π) with a(x) > 0 on a given open set Ω ⊂ (0, 2π).
We analyze the following cases for the operator B : Bφ = a(x)φ and Bφ = −(a(x)φx)x. In

both cases, the energy associated to (2) is given by

E(t) =
1

2

∫ 2π

0

(|η(t)|2 + γ1|ηx(t)|2 + δ1|ηxx(t)|2)dx (3)

and (at least formally) it follows that dE(t)
dt = −

∫
Ω
Bη(t)η(t)dx. Indeed, to obtain this last

equality we multiply the equation in (2) by η and integrate by parts over (0, 2π). Thus, since∫
Ω
Bη(t)η(t)dx > 0, the energy E(t) decreases along the trajectories, and the operators B play

the role of a damping mechanism. Next, we address the boundary stabilization problem. More
precisely, we consider (2) with B ≡ 0 on (0, L), with initial condition η(0, x) = η0(x) and the
following boundaries conditions

γ1ηxt(t, 0)− δ1ηtxxx(t, 0) =
3
2η(t, 0) + γ2ηxx(t, 0) for t ≥ 0,

γ1ηxt(t, L)− δ1ηtxxx(t, L) = −η(t,L)
2 + γ2ηxx(t, L) for t ≥ 0,

δ1ηtxx(t, 0) =
(
1− γ2

2

)
ηx(t, 0) for t ≥ 0,

δ1ηtxx(t, L) = −
(
1 + γ2

2

)
ηx(t, L) for t ≥ 0.

(4)
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2

In this case, the energy associated to this model is given by

E(t) =
1

2

∫ 2π

0

(|η(t)|2 + γ1|ηx(t)|2 + δ1|ηxx(t)|2)dx (5)

and (at least formally) it follows that dE(t)
dt = −(|η(t, L)|2 + |η(t, 0)|2) − (|ηx(t, L)|2 + |ηx(t, 0)|2).

Thus, the energy E(t) is decreasing and the boundary conditions play the role of a feedback-
damping mechanism. We show that some of Rosier’s results [3] can be extended to the dissipative
models introduced above. Roughly speaking, once the unique continuation property and the well-
posedness of solutions have been proved, our results on the asymptotic behavior of the solutions
of (2) and (2)-(4) can be described as follows:

Theorem 1. For any η0 ∈ H2
p (0, 2π), the solution η of (2) satisfies

η(t) → 0 weakly in H2
p (0, 2π),

η(t) → 0 strongly in Hs
p(0, 2π), for all s ∈ [0, 2), as t → ∞

If the damping mechanism Bφ involves one derivative, the solutions converge to the mean of the
initial datum.

Theorem 2. For any η0 ∈ H2
p (0, 2π), the solution η of (2) satisfies

η(t) → [η0] weakly in H2
p (0, 2π),

η(t) → [η0] strongly in Hs
p(0, 2π), for all s ∈ [0, 2), as t → ∞, where [f ] :=

1

2π

∫ 2π

0

f(x)dx.

Finally, when the equation is dissipated through the boundary conditions, we obtain the fol-
lowing result:

Theorem 3. For any η0 ∈ H2(0, L), the solution η of (2)-(4) with B ≡ 0 and γ2 = 0 satisfies

η(t) → 0 weakly in H2(0, L),

η(t) → 0 strongly in Hs(0, L), for all s ∈ [3/2, 2), as t → ∞.

Our proofs rely on the approach developed in [3] to study similar problems for the scalar BBM
equation and [1, 2] for the BBM-type systems.
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