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Abstract— This work presents an algorithm for changing from longitudinal to latitudinal formation of au-
tonomous aircraft squadrons. The maneuvers are defined dynamically by using a predefined set of 3D basic
maneuvers. This formation changing is necessary when the squadron has to perform tasks which demand both
formations, such as landing, lift off, obstacle avoidance and georeferencing. The time complexity analysis of the
transformation algorithm reveals that its efficiency is optimal. Simulations show that the formation changing is
made without collision and the proof of correction ensures its latitudinal formation features.
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Resumo— Este trabalho apresenta um algoritmo de mudança de formação em longitude para formação lat-
itudinal de esquadrilhas de aeronaves autônomas. As manobras são definidas dinamicamente utilizando-se um
conjunto pré-definido de manobras 3D básicas. Esta mudança de formação é necessária quando a esquadrilha
tem que desenvolver tarefas que demandam ambas as formações, tais como aterrissagem, decolagem, desvio de
obstáculos e georreferenciamento. A análise de complexidade de tempo do algoritmo de transformação revela
que sua eficiência é ótima. As simulações mostram que a mudança de formação é feita sem colisão, e a prova de
correção assegura suas caracteŕısticas de formação latitudinal.

Keywords— Algoritmos, Agentes Inteligentes, Sistemas Multiagentes, Robótica, Simulação

1 Introduction

Recently, it has been possible to see a growing in-
terest in the development of autonomous aircraft
that can cooperate with several organizations in
the solution of public security problems. Police
and army are some examples. This happens be-
cause the autonomous agents can deal with un-
healthy or dangerous problems, like monitoring
of areas with armed conflict, violence monitoring,
fires, deforestation monitoring and inspection of
nuclear areas, without to expose humans to the
risks.

When several agents are used in the solution
of these problems, some advantages arise: a) it
is possible to make a better use of sensors, since
they can be shared by the network, b) distributed
systems are usually more robust than the central-
ized ones. c) autonomous aircraft typically fly
at low heights, hence good quality images can
be captured, and d) when autonomous aircraft
squadrons are used in georeferencing, the visual
field of the cameras increases,since the images cap-
tured by each aircraft can be mosaicked.

The longitudinal formation presented in Fig-
ure 1 is necessary when the squadron is landing
and doing lift off, and can also be used for collision
avoidance: if the first aircraft succeeds in avoiding
the collision, all other aircraft in the squadron can
also avoid the obstacle by using the same behav-

ior.

The latitudinal formation shown in Figure 2 is
an attractive formation to deal with the georefer-
encing problem, since better area coverage can be
achieved. Therefore, if the same squadron needs
to perform obstacle avoidance, landing, lift off and
georeferencing, it will eventually be necessary for
the squadron to change between its longitudinal
and latitudinal formations.

Figure 1: The longitudinal formation can be used
for collision avoidance, landing and lift off.

Therefore, the problem considered in this
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work is: assuming that there are n aircraft in lon-
gitudinal formation, equally spaced by ∆d meters,
we want to develop an algorithm that changes the
squadron to the latitudinal formation, where the
aircraft will also be equally spaced by ∆d meters,
without collision among them.

Figure 2: It is possible to achieve good area cov-
erage with the latitudinal formation.

This problem is different of the one consid-
ered in (Giacomin and Hemerly, 2013a), since the
one treated here deals with transition from longi-
tudinal to latitudinal formation, but the one pre-
sented in (Giacomin and Hemerly, 2013a) deals
with changing from latitudinal to longitudinal for-
mation. Therefore, although apparently similar,
the algorithms, sequence of maneuvers, simulation
results and theoretical analysis are quite different.

The problem considered here involves con-
trol, trajectory generation and aircraft formation.
Control techniques, like the reinforcement learn-
ing (Santos et al., 2012) do not focus on the chang-
ing of formation. Trajectory generation made by
using optimization algorithms are usually found
in the literature. Some examples are the works of
(Cheng and Leung, 2012) and (Xu et al., 2012),
but works like these do not focus on well de-
fined geometric formations. Other techniques are
also used in the trajectory definition, like the ge-
ometric moments, controlled via nonlinear gra-
dient (Morbidi et al., 2011), the modern matrix
analysis used by (Coker and Tewfik, 2011), the
combination of the hybrid navigation architec-
ture with the local obstacle avoidance methodol-
ogy and with the model predictive control (Jansen
and Ramirez-Serrano, 2011), the navigation func-
tions (Roussos and Kyriakopoulos, 2012), and the
variation of rapidly-exploring random trees (Neto
et al., 2010). But they also do not consider the
changing between well defined geometric forma-
tions during the flight. The formation problem
is treated by the nonlinear model predictive con-
trol approach of (Chao et al., 2012) and by the
leader-follower approach of (You and Shim, 2011)
and (Gu et al., 2009), but changing between well

defined geometric formations is not considered.
The formation reconfiguration is studied by

(Knoll and Beck, 2006), where the aircraft move
their position inside a formation, and the same
formation is considered before and after the re-
configuration. The autonomous decision-making
architecture (Venkataramanan and Dogan, 2004)
also considers this problem, but neither (Knoll
and Beck, 2006) nor (Venkataramanan and Do-
gan, 2004) consider the transition between differ-
ent formations. After exhaustive literature search-
ing, it was not found an algorithm that deals with
the problem considered here. Thus, the main con-
tributions of this work are:

1. An algorithm, adapted from (Giacomin and
Hemerly, 2013a), for changing from the lon-
gitudinal to the latitudinal formation of the
squadron. The time complexity analysis of
the proposed algorithm demonstrates its effi-
ciency is optimal.

2. The simulation results by considering a case
study, in which the aircraft do not collide,
and a proof of correction of the proposed algo-
rithm, that ensures its latitudinal formation
features.

These contributions are described in the next
sections, namely: 2 - Methodology, 3 - Simulation
Results, 4 - Theoretical Analysis and 5 - Conclu-
sion.

2 Methodology

A set of maneuvers is specified, so that the pro-
posed algorithm can use it to create references to
be followed by the aircraft.

2.1 The Maneuvers Scheme

Two 3D basic maneuvers are employed by the pro-
posed algorithm, as described in (Giacomin and
Hemerly, 2013b). Here they are called C and FW
to implement the to turn and go forward maneu-
vers, respectively. The to turn interface is C(P ,
ϕ, β, θ, α, vel, r, T ), and the go forward interface
is FW(P , ϕ, β, vel, d, T ), where P is the ini-
tial position (x0, y0, h0), T is a vector time to be
filled with time intervals, ϕ is the angle between
the maneuvers and the latitudinal axis in coun-
terclockwise direction, θ is the spin angle around
the longitudinal axis, β is the angle between the
maneuvers and the longitudinal-latitudinal plane,
α is the angle of the arc of the to turn maneuver
with radius r, vel is the velocity of the maneuvers
and d is the distance of the go forward maneuver.
The angles ϕ, β and θ are applied firstly by using
the coordinate system base (0, 0, 0), and after the
maneuver is translated to the base (x0, y0, h0).

The C and FW algorithms are used by the
transition algorithm described at Subsection 2.2.
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2.2 The Transition Algorithm

The transition algorithm is shown in Algorithm 1.
It is called FLOTLA due to the initial characters
that describe its function: From Longitudinal To
Latitudinal formation. It basically performs the
maneuvers presented in Figure 3, and the equiva-
lent mirrored ones, by each aircraft moving to the
left and to the right of the squadron, respectively.

Figure 3: An aircraft goes out from the middle
line when it assumes the latitudinal formation.

The interface of the transition algorithm is
FLOTLA(i, ∆d, vel, r, ϕ, β, P ), where P is the
aircraft initial position (x0, y0, h0), ϕ and β have
the same meaning that in the previously described
C and FW interfaces, r is the radius of the to turn
maneuvers used by the transition algorithm, vel
is the aircraft airspeed, and i is the aircraft index
shown in Figures 1 and 2.

Algorithm 1 is executed by each aircraft pro-
cessor, in parallel. Each aircraft executes four ma-
neuvers. The values that are determined between
Lines 7 and 15 are used to fit each maneuver with
the next one.

Each aircraft goes out from the middle line of
the squadron between Lines 17 and 21. At Line 34,
the aircraft increases the diagonal distance from
the middle line of the squadron. Between Lines 36
and 41, the aircraft moves to enter on the latitu-
dinal position. Finally, for all aircraft, except the
first one, Algorithm 2 calculates the forward dis-
placement, called ∆m, at Line 43. After, the air-
craft enter into the latitudinal formation at Line
44.

The aircraft model presented at Subsection
2.3 was used to test the references created by the
Algorithm 1.

2.3 The Aircraft Model

The simple and well-tested aircraft state space
model, see (Anderson and Robbins, 1998) for de-
tails, is employed, and is given by

Algorithm 1 The transition algorithm

1: procedure FLOTLA(i, ∆d, vel, r, ϕ, β, P )
2: T ← ∅
3: Ref ← ∅
4: side← direction(i,N)
5: k ← 0
6: while k < 4 do
7: if |Ref | 6= 0 then
8: P0 ← penultimate(Ref)
9: D ← distance(P1, P0)

10: ϕ2 ← sin−1(∆y/D)
11: β2 ← sin−1(∆h/D)
12: else
13: ϕ2 = ϕ
14: β2 = β
15: end if
16: if k = 0 then
17: if side = LEFT then
18: a← C(P1, ϕ2, β2, 0,

π
4 , vel, r, T )

19: else
20: a← C(P1, ϕ2, β2, π,

π
4 , vel, r, T )

21: end if
22: else if k = 1 then
23: if even(N) then
24: i2 ← b(N − i− 1)/2c
25: ∆← ∆d/2 + i2 ·∆d

26: else
27: if i 6= 0 then
28: ∆← b(i+ 1)/2c ·∆d

29: else
30: ∆← 0
31: end if
32: end if
33: ∆2 ←

√
2 · (∆−2 ·r ·(1−cos(π/4)))

34: a← FW (P1, ϕ2, β2, vel,∆2, T )
35: else if k = 2 then
36: if side = LEFT then
37: ϕ3 ← −ϕ2

38: a← C(P1, ϕ3, β2, π,
π
4 , vel, r, T )

39: else
40: a← C(P1, ϕ2, β2, 0,

π
4 , vel, r, T )

41: end if
42: else
43: ∆m ← advancing(i,∆d) + k2
44: a← FW (P1, ϕ2, β2, vel,∆m, T )
45: end if
46: Ref ← Ref ∪ a
47: P1 ← last(Ref) . does not modify Ref
48: k ← k + 1
49: end while
50: return Ref
51: end procedure
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Algorithm 2 The advancing algorithm

1: procedure advancing(i, ∆d)
2: if odd(N) then
3: if odd(i) then
4: ∆m ← ∆d + 3 · bi/2c ·∆d

5: else
6: ∆m ← 3 · bi/2c ·∆d

7: end if
8: else
9: if odd(i) then

10: ∆m ← ∆d + 3 · b(i− 1)/2c ·∆d

11: else
12: ∆m ← 3 · bi/2c ·∆d

13: end if
14: end if
15: return ∆m

16: end procedure

dV

dt
= g ·

[
(T −D)

W
− sin(γ)

]
(1)

dγ

dt
=

g

V
· [n · cos(µ)− cos(γ)] (2)

dχ

dt
=

g · n · sin(µ)
V · cos(γ)

(3)

dx

dt
= V · cos(γ) · cos(χ) (4)

dy

dt
= V · cos(γ) · sin(χ) (5)

dh

dt
= V · sin(γ) (6)

where the state variables are: the position vari-
ables (x, y, h), flight path heading (χ), flight path
angle (γ), and airspeed (V).

Here, the references created by Algorithm
1 are submitted to a control scheme that em-
ployes the above aircraft model. It is presented
in (Giacomin and Hemerly, 2013b).

3 Simulation Results

The Algorithm 1 is programmed in parallel by
using the GNU Message Passing Interface (MPI)
Compiler and the C++ programming language.
The software Gnuplot is used for plotting the
graphics.

The initial condition for all aircraft are: ∆d =
18, 300.00 meters, assuming the longitudinal for-
mation, airspeed: 30.5 m/s, and height: 3, 050.00
meters. A radius of 4, 575.00 meters is used by
Algorithm 1 to create the references, and different
airspeeds are calculated for each aircraft, that al-
low all aircraft to arrive on latitudinal formation
at the same time instant. The results are shown
in Figures 4, 5, 6 and 7. The Runge-Kutta-4 al-
gorithm is used in the simulation.

Figure 4: The aircraft references are marked for
crossing analysis.

Figure 5: The aircraft trajectories succeed in fol-
lowing the references.

The marks shown in Figures 4 and 5 are used
to analyze the aircraft crossing. When the air-
craft number zero and tree are flying over the third
mark, the aircraft number one and two are ahead.
A simple verification algorithm did show that the
minimum distance between aircraft 0 and 1 and
between aircraft 2 and 3 was 18.3 km and 16.8
km, respectively. Therefore, there is no collision.

The simulation is made by considering a noise
of 0.5% for airspeed, and a noise of 0.25% for head-
ing and gamma angles. From Figures 4, 5, 6 and
7 it is possible to conclude that Algorithm 1 cre-
ates the references correctly and that the aircraft
succeed in following the references.

Figure 6: All aircraft velocities are stables.
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Figure 7: First aircraft heading angle switches be-
tween two values.

It remains to prove the correction of the Algo-
rithm 1 and to analyze its time complexity. This
is made in Section 4.

4 Theoretical Analysis

Firstly, it is presented the time complexity anal-
ysis of Algorithm 1, and after will be showed its
proof of correction.

4.1 The Time Complexity Analysis

The to turn and go forward functions are executed
over a fixed number of maneuvers, and all other
functions used in Algorithm 1 have constant time
complexity. Let Q = {q0, · · · , q|Q|−1} be the set
of maneuvers, and let R = {r0, · · · , r|Q|−1} be the
set of references, with ri = ref(qi), and the func-
tion ref be implemented by using the functions C
or FW in the Algorithm 1. Then, |ri| is the ref-
erences quantity for each maneuver qi, and R is a
set of sets. The time complexity of Algorithm 1 is

O(|r0|+ |r1|+ |r2|+ |r3|)
m = |r0|+ · · ·+ |r3|

O(m)

where m represents the total time steps for each
aircraft trajectory. Since this is also the lower
bound for the problem, it is concluded that the
FLOTLA algorithm has optimal time complexity
(Cormen et al., 2009).

4.2 The Proof of Correction

The proof of correction takes into account that
Figure 3 describes basically the maneuvers that
are executed by Algorithm 1, except the last one,
that is created by Algorithm 2.

Theorem 1 Let assume a set of aircraft initially
flying in longitudinal formation, with each aircraft
equally spaced by ∆d from its neighbors. Then, if
the FLOTLA algorithm is executed by each air-
craft, the latitudinal formation is achieved, with
spacing ∆d between its neighbors.

Proof: It is considered n aircraft in the squadron.
Clearly, if n is even, it can be concluded by analyz-
ing Line 24 of Algorithm 1 that ∆i+2 −∆i = ∆d.
Then

∆i
y = 2 ·r ·(1−cos(π/4))+∆d/2+k ·∆d+∆x−· · ·

· · · − 2 · r · sin(π/4)

∆i+2
y = 2·r·(1−cos(π/4))+∆d/2+(k+1)·∆d+∆x−· · ·

· · · − 2 · r · sin(π/4)

∆i+2
y −∆i

y = ∆d

If n is odd, it follows, by analyzing Lines 27
to 31 of Algorithm 1, that ∆i+2−∆i = ∆d. Then

∆i
y = 2 · r · (1− cos(π/4)) + k ·∆d +∆x − · · ·

· · · − 2 · r · sin(π/4)

∆i+2
y = 2 ·r ·(1−cos(π/4))+(k+1) ·∆d+∆x−· · ·

· · · − 2 · r · sin(π/4)

∆i+2
y −∆i

y = ∆d

and therefore, ∆i+2
y − ∆i

y = ∆d for every n and
for every i.

Similar reasoning can be applied to ∆x.
Clearly, if n is even and i is even, it can be
concluded by analyzing Algorithm 2 that ∆i

m −
∆i+1

m = ∆d. Then

∆i
x = k·∆d+2·r·sin(π/4)+∆y−2·r·(1−cos(π/4))

∆i+1
x = (k + 1) ·∆d −∆d + 2 · r · sin(π/4) + · · ·

· · ·+∆y − 2 · r · (1− cos(π/4))

∆i+1
x −∆i

x = 0

that is the same case that happens when n is odd
and i is even. If n is even and i is odd, it follows by
analyzing Algorithm 2 that ∆i+1

m −∆i
m = 2 ·∆d,

and then

∆i
x = k ·∆d + 2 · r · sin(π/4) + ∆d +∆y − · · ·

· · · − 2 · r · (1− cos(π/4))

∆i+1
x = (k + 2) ·∆d −∆d + 2 · r · sin(π/4) + · · ·

· · ·+∆y − 2 · r · (1− cos(π/4))

∆i+1
d −∆i

d = 0

that is the same case that happens when n is odd
and i is odd. Therefore, ∆i+1

d −∆i
d = 0 for every

n and for every i. Since the same reasoning can
be made with different cooperate system bases,
and since all aircraft arrive on longitudinal forma-
tion at the same time instant, then the theorem is
proved. 2
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5 Conclusion

An algorithm for changing from longitudinal
to latitudinal formation for autonomous aircraft
squadrons is presented in this paper. Despite the
relevance of this problem, extensive literature re-
view did not produce relevant results.

The proposed FLOTLA algorithm time com-
plexity is optimal, since it is equal to the problem
lower bound (Cormen et al., 2009). This result
was not different from the opposite case consid-
ered in (Giacomin and Hemerly, 2013a).

It was proved that if each aircraft is equally
spaced from its neighbors by distance ∆d on the
longitudinal formation, then the proposed algo-
rithm makes the squadron to change its formation
to latitudinal one, keeping the same distance ∆d

from each aircraft and its neighbors.
The references were created correctly by the

proposed algorithm, such that they could be fol-
lowed by a control scheme, and the theoretical
analysis was confirmed by the simulations, by
showing that the aircraft do not collide during the
formation transition. Additionally, the number of
aircraft has to be limited because the aircraft use
different velocities, that have to be verified at de-
sign time, for security reasons.

References

Anderson, M. R. and Robbins, A. C. (1998). For-
mation flight as a cooperative game, Col-
lection of Technical AIAA Guidance, Navi-
gation, and Control Conference and Exhibit
10(12): 244–251.

Chao, Z., Zhou, S.-L., Ming, L. and Zhang, W.-G.
(2012). Uav formation flight based on non-
linear model predictive control, Mathematical 
Problems in Engineering 2012(261367): 1–
15. DOI: 10.1155/2012/261367 

Cheng, C. and Leung, H. (2012). A genetic
algorithm-inspired uuv path planner based 
on dynamic programming, IEEE Trans-
actions on Systems, Man and Cybernet-
ics – Part C: Applications and Reviews 
42(6): 1128–1134. DOI: 
10.1109/TSMCC.2011.2180526

Coker, J. and Tewfik, A. (2011). Performance
synthesis of uav trajectories in multistatic
sar, Aerospace and Electronic Systems, IEEE
Transactions on 47(2): 848–863.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and
Stein, C. (2009). Introduction to Algorithms,
MIT Press.

Giacomin, P. A. S. and Hemerly, E. M. (2013a).
An optimal algorithm for changing from
latitudinal to longitudinal formation of au-
tonomous aircrafts squadrons, XI Simpósio

Brasileiro de Automação Inteligente, Submit-
ted.

Giacomin, P. A. S. and Hemerly, E. M. (2013b).
Parallel simulation for autonomous aircrafts
squadrons using virtual structure and a
3d maneuvers scheme, 22nd International
Congress of Mechanical Engineering, Submit-
ted.

Gu, Y., Campa, G. and Seanor, B. (2009). Ahe-
rial Vehicles, InTech, chapter Autonomous
formation flight - desing and experiments,
pp. 235–257.

Jansen, F. and Ramirez-Serrano, A. (2011). Agile
unmanned vehicle navigation in highly con-
fined environments, IEEE International Con-
ference on Systems, Man, and Cybernetics,
p. 2381–2386.

Knoll, A. and Beck, J. (2006). Autonomous
decision-making applied onto uav formation
flight, AIAA Modeling and Simulation Tech-
nologies Conference and Exhibit.

Morbidi, F., Freeman, R. and Lynch, K. (2011).
Estimation and control of uav swarms for dis-
tributed monitoring tasks, American Control
Conference (ACC), 2011, pp. 1069–1075.

Neto, A. A., Macharet, D. G. and Campos, M. F.
(2010). On the generation of trajectories for 
multiple uavs in environments with obstacles, 
J. Intell. Robotics Syst. 57(1-4): 123–141. 
DOI: 10.1007/s10846-009-9365-3

Roussos, G. and Kyriakopoulos, K. J. (2012). De-
centralized navigation and conflict avoidance
for aircraft in 3-d space, IEEE Transactions
on Control Systems Technology 20(6): 1622 –
1629. DOI: 10.1109/TCST.2011.2167974

Santos, S. B. d., Givigi, S. and Nascimento Junior,
C. (2012). An experimental validation of re-
inforcement learning applied to the position
control of uavs, Systems, Man, and Cybernet-
ics (SMC), 2012 IEEE International Confer-
ence on, pp. 2796–2802.

Venkataramanan, S. and Dogan, A. (2004). A
multi-uav simulation for formation reconfigu-
ration, AIAA Modeling and Simulation Tech-
nologies Conference and Exhibit.

Xu, N., Kang, W., Cai, G. and Chen, B. M.
(2012). Minimum-time trajectory plan-
ning for helicopter uavs using computational
dynamic optimization, IEEE International
Conference on Systems, Man and Cybernet-
ics, pp. 2732–2737.

You, D. I. and Shim, D. H. (2011). Autonomous
formation flight test of multi-micro aerial ve-
hicles, J Intell Robot Syst 61(1-4): 321–337. 
DOI: 10.1007/s10846-010-9481-0

Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, Vol. 1, N. 1, 2013.

DOI: 10.5540/03.2013.001.01.0046 010046-6 © 2013 SBMAC

http://dx.doi.org/10.1155/2012/261367
http://dx.doi.org/10.1109/TSMCC.2011.2180526
http://dx.doi.org/10.1007/s10846-009-9365-3
http://dx.doi.org/10.1109/TCST.2011.2167974
http://dx.doi.org/10.1007/s10846-010-9481-0
http://dx.doi.org/10.5540/03.2013.001.01.0046



