Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 10, n. 1, 2023.

Trabalho apresentado no XLII CNMAC, Universidade Federal de Mato Grosso do Sul - Bonito - MS, 2023

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics

Modelo de trocador de calor de superfície em aeronave

Edemar Morsch Filho¹, Henrique Carreira Martins², Universidade Estadual Paulista (Unesp), São João da Boa Vista, SP Laio Oriel Seman³ Pontifícia Universidade Católica do Paraná, Curitiba, PR

Na aviação, atualmente discute-se muito a questão da eletrificação das aeronaves e como o seu sistema de gerenciamento térmico irá operar neste novo contexto, sabendo que sempre há calor sendo gerado na operação de componentes eletrônicos [1, 2]. Aliado à este fator, o aumento do uso de materiais compósitos em aeronaves também introduz dificuldades para a rejeição de calor através da fuselagem em contato com a atmosfera [3]. Em termos de temperatura de um avião, o cenário extremo quente ocorre com ele no aeroporto, onde valores de convecção natural sobre as superfícies externas (fuselagem, asa, ...) costumam estar entre 1 e 5 W/m²K. Por outro lado, o caso extremo frio acontece em altitude de cruzeiro, com o ar externo na temperatura aproximada de -56°C (11 km) e velocidade de corrente livre de aproximadamente 850 km/h.

Usualmente, o combustível não queimado da aeronave localizado nas asas do avião é uma das possibilidades empregadas como um meio dissipador de calor, a exemplo do resfriamento do óleo do motor, sistema hidráulico e eletrônico. No entanto, o escoamento aerodinâmico sobre a aeronave impacta diretamente no seu desempenho, e varia em função da altitude e velocidade da aeronave. Consequentemente, a eficiência do gerenciamento térmico baseado no uso do combustível também é afetado. Portanto, a modelagem do escoamento sobre a aeronave, da condução de calor na estrutura da asa, do escoamento hidrodinâmico do combustível e das fontes de calor são fundamentais para avaliar a capacidade do sistema térmico de um avião dissipador calor utilizando o combustível.

Este trabalho propõe o estudo do uso do combustível como um dissipador de calor para as próximas gerações de aeronaves, utilizando a área da asa de uma aeronave como um trocador de calor de superfície. Para isso, uma seção do trocador de calor de superfície está exemplificado na Figura 1, onde o balanço de energia baseado em um modelo nodal pode ser aplicado e resolvido.

Em cada nó, a equação de conservação é resolvida em regime permanente utilizando as temperaturas de entrada $(T_{f_{in}})$ e saída do combustível $(T_{f_{out}})$, assim como informações da retirada de calor Q_{out} por convecção com o ar ambiente externo e radiação, como exemplificado na equação:

¹edemar.filho@unesp.br

²henrique.c.martins@unesp.br

³laio.seman@pucpr.br

$$hA\left(T_{s}-T_{\infty}\right)+\varepsilon\sigma A\left(T_{s}^{4}-T_{viz}^{4}\right)-\alpha AQ_{sol}^{''}=\dot{m}_{f}c_{p}\left(T_{f_{in}}-T_{f_{out}}\right)=Q_{out}$$
(1)

em que h é o coeficiente de transferência de calor por convecção $[W/m^2K]$, A é a área da superfície $[m^2]$, T_s é temperatura da superfície [K], T_∞ é a temperatura do ambiente [K], ε é a emissividade [-], σ é a constante de Stefan-Boltzmann $[W/m^2K^4]$, T_{viz} é a temperatura da vizinhança [K], α a absortividade [-], Q'_{sol} é o fluxo de radiação solar, \dot{m}_f é a vazão de combustível [kg/s] e c_p é o calor específico do combustível. Manipulando esta equação e utilizando o conceito de resistência térmica de condução (R_k) pela parede e de convecção forçada interna do combustível (R_{h_f}) , obtém-se:

$$T_{f_{in}} + \frac{T_{f_{in}} \left[\dot{m}_f c_p \left(R_{h_f} + R_k \right) - 0, 5 \right] + T_s}{\left[\dot{m}_f c_p \left(R_{h_f} + R_k \right) + 0, 5 \right]} - 2T_s = 2 \left(R_{h_f} + R_k \right) Q_{out}$$
(2)

onde Q_{out} é o lado esquerdo da Equação 1. Apenas a temperatura da superfície T_s e o coeficiente de transferência de calor por convecção forçada h (interno e externo) são desconhecidos, porém este último podem ser estimado por meio de relações envolvendo o número de Nusselt. A Equação 2 não é linear e, portanto, neste trabalho é adotado o método de Newton-Raphson para resolvê-la.

Uma análise em cima de certas condições de operações foi realizada, com foco na taxa de dissipação de calor ao longo da envergadura, e está apresentada na Figura 2. Quando observa-se a taxa de energia dissipada, as maiores vazões proporcionam os melhores resultados. A vazão de 100.0 kg/s apresenta os maiores níveis de resfriamento, seguida da vazão de 10.0 kg/s, e por último a vazão de 1.0 kg/s. Esta tendência vai ao encontro da Equação 2, onde mostra-se que a energia dissipada Q_{out} é diretamente proporcional à vazão mássica \dot{m}_f .

Figura 2: Calor dissipado ao longo da envergadura no taxiamento (esquerda) e cruzeiro (direita).

Referências

- A.S.J. van Heerden, D.M. Judt, S. Jafari, C.P. Lawson, T. Nikolaidis e D. Bosak. "Aircraft thermal management: Practices, technology, system architectures, future challenges, and opportunities". Em: Progress in Aerospace Sciences 128 (2022), p. 100767. ISSN: 0376-0421. URL: https://www.sciencedirect.com/science/article/pii/S0376042121000701.
- [2] Soheil Jafari e Theoklis Nikolaidis. "Thermal Management Systems for Civil Aircraft Engines: Review, Challenges and Exploring the Future". Em: Applied Sciences 8.11 (2018). ISSN: 2076-3417. DOI: 10.3390/app8112044.
- [3] Albert S. van Heerden, David M. Judt, Craig P. Lawson, Soheil Jafari, Theoklis Nikolaidis e David Bosak. "Framework for integrated dynamic thermal simulation of future civil transport aircraft". Em: AIAA Scitech 2020 Forum. 2020. DOI: 10.2514/6.2020-1942. URL: https: //arc.aiaa.org/doi/abs/10.2514/6.2020-1942.