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This work performs experiments for the numerical resolution of the one-dimensional Poisson
equation with Robin boundary conditions, using the second-order mimetic discretization method,
based on the 1D Castillo-Grone mimetic operator [1]. Consider the following equation on a uniform
grid,

∇2u(x) = f(x) on [0, 1] (1)

subject to Robin boundary conditions

αf(0)− βf ′(0) = −1; αf(1) + βf ′(1) = 0,

where

f(x) =
λ2eλx

eλx − 1
, α = −eλ, β =

eλ − 1

λ
, λ = −1.

To solve the linear system Au = f associated with this problem, we used the restarted GMRES
with m = 10, and the BiCGStab as iterative methods. Also, the Jacobi and SOR with ω = 1 are
used to try to improve the convergence. In Tables 1 and 2, colum h corresponds to step size of the
uniform grid, Condest is the condition number of the preconditioned matrix of the linear system.
For each value of h we find the relative error ||u−u∗||/||u∗||, where u is the approximate numerical
solution by the selected iterative method plus the preconditioner and u∗ is the analytical or exact
solution.

Table 1: Numerical results for ||u− u∗||/||u∗|| with Jacobi Preconditioner
h Condest GMRES(10) BiCGStab

0.20 311.9 0.002184 0.002184
0.10 1073.0 0.000537 0.000545
0.05 3948.4 0.000126 0.00136
0.01 91903.2 1.165131 0.000004

Table 2: Numerical results for ||u− u∗||/||u∗|| with SOR(ω = 1) Preconditioner
h Condest GMRES(10) BiCGStab

0.20 190.6 0.002184 0.002184
0.10 662.5 0.000543 0.000541
0.05 2421.5 1.008095 0.00132
0.01 55928.2 1.142317 0.000010
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The convergence of the GMRES(10) is only achieved up to h = 0.05 using Jacobi and h =
0.1 using SOR, for smaller values of h the GMRES(10) diverges. Conversely, for BiCGStab the
convergence is maintained up to h = 0.001, but for smaller values, the BiCGStab also diverges. In
Figure 1 we can see the performance of the residual norm for the different combinations of iterative
methods and preconditioners. The BiCGStab method has a bad performance at the beginning,
even with a growth of the residual norm, but then a rapid decrease is achieved. Òn the other hand,
the restarted GMRES is characterized by its non-increasing monotonic norm, but for this problem
only the preconditioning with SOR achieves convergence.
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Relative residuals for different iterative methods and preconditioners (h=0.1)
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Figure 1: Relative residuals for GMRES(10) and BiCGStab using step size h = 0.1.

By decreasing h, only an appropriate preconditioner will allow the iterative method to achieve
convergence. However, the choice of such preconditioning technique is not clear. In this work
we will look for preconditioning and iterative methods techniques that overcome stagnation by
reducing the relative error to less than 10−6 for h < 0.001. Adaptive-parameter iterative methods
[2] and other preconditioners [3] will be tested for such goal.
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