
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics
Preprint

Navier Stokes modeled with MFEM

Danny Julian Perilla Mikan1, Ana Maria Luz2

UFF, Niterói, RJ
Henrique Versieux3

UFMG, Belo Horizonte, MG

Finite Element methods can be used to model fluid dynamics problems using Navier Stokes
equation in several different ways but we are interested in compare two approaches for a physical
application. The challenge in using a complex geometry immersed in a fluid flow is how to construct
a mesh that can be adapted near the object’s surface with possible irregular edges or cramped sides.
It is possible to construct unstructured meshes in order to do that but it is also possible to use a
penalization term (or forcing term f) within the Navier Stokes momentum equation (1) and use a
Cartesian mesh as our domain Ω which is computationally cheaper.

∂u

∂t
+ (u · ∇)u+∇p− ν∆u = f , in Ω. (1)

MFEM library has a solver for the incompressible Navier Stokes equation which takes equation (1)
and uses this in a dimensionless form yielding,

∂u

∂t
+ (u · ∇)u+∇p− 1

Re
∆u = f , in Ω. (2)

∇ · u = 0, in Ω. (3)

Where Re is the Reynolds number [1]. The solver necessarily works with structured meshes,
however, we can store the geometrical information of a solid’s volume Ω0 ⊂ Ω into the forcing
term by defining a characteristic function χ(x, t) depending on whether a point x ∈ Ω belongs to
the solid’s volume Ω0 or not avoiding having to work with complicated unstructured meshes. The
advantage of this method is that χ can have an explicit dependence on time, which allows us to
model moving solids without generating a new mesh at every time step. On the surface of the
closed volume the velocity must satisfy the no-slip condition u = u0 where u0 is the velocity of
the solid itself. Therefore, a suitable way to define the penalization term is

f =
1

η
χ(x, t)(u− u0), (4)

where η = K/ν > 0, the scalar K is the measure of the flow conductance through the solid’s
volume seen as a porous medium and it is called the permeability4, it does not depend on the
nature of the fluid instead it depends on the geometry of the porous medium and has dimensions
of m2 [2]. Permeability can also be seen as K = Da ·d2 where Da is a dimensionless number known
as the Darcy number and d is a characteristic length of the medium. In the limit η −→ 0, the fluid
satisfies the Navier–Stokes equations with f = 0 in Ω\Ω0 just as if we were not define the fictitious
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4In general, the permeability is a second-order tensor but assuming an isotropic medium, it reduces to a scalar.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 10, n. 1, 2023.

Trabalho apresentado no XLII CNMAC, Universidade Federal de Mato Grosso do Sul - Bonito - MS, 2023

010352-1 © 2023 SBMAC



2

domain Ω0, and satisfies the Darcy’s law in Ω0 [3].

Our mathematical treatment is based on addressing the steady and linear case known as the
Stokes problem. We can see the Stokes problem as a saddle point problem and prove that it is
well-posed by taking into account that from the point of view of the calculus of variations, the
Stokes problem corresponds to the minimization of a functional. It is also possible to prove that
the Stokes problem with the penalized term:

∇p− ν∆u+
ν

K
u = f , in Ω, (5)

∇ · u = 0, in Ω, (6)

is also well-posed [4]. We are going to quantify how much this penalization method is actually com-
putational better than the conventional method in which we define meshes considering the solid’s
walls. As well, we see how accurate our solution is, in relation to the exact analytical solution for
a Stokes problem. For this purpose, we use an axisymmetrical flow example [5] in hydrodynamics
with exact solution: a ball of radius a, in uniform translation U as shows figure 1.

Figure 1: Translating sphere.

This allows us to test the precision of the numerical method and to find an approximation
sufficiently near to the theory. After being sure that our method is sufficiently accurate, we
enhance the complexity of the physical system by incorporating rotation within the penalized term
and adding body forces like gravity into a new forcing term. Finally, we use the MFEM Navier
Stokes solver in order to see a time evolution of the physical phenomenon for the flying sphere.
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