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Abstract. This study analyzes the role of individual neurons in neural network performance,
focusing on the concept of “rotten” neurons whose removal affects network accuracy. By examining
two neural network configurations across the MNIST and SVHN datasets, we demonstrate the
diverse impact of neurons, from beneficial to detrimental. Our results reveal that neural network
efficiency can be improved by addressing the influence of specific neurons. This research highlights
the potential for neuron-level analysis and pruning to enhance neural network optimization.
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1 Introduction
Neural networks are powerful tools for pattern recognition and prediction, yet the significance

of individual neurons within these networks is not fully understood. In this study, we perform
a comprehensive analysis by assessing the impact of the removal of individual neurons on the
performance of the network. To conduct this analysis, we utilized well-known datasets, namely the
MNIST [1] and the Street View House Numbers (SVHN) [2], and employed a Multilayer Perceptron
(MLP) Classifier using the “sklearn” package [3]. This approach allowed us to systematically
investigate how neurons contribute to the overall functionality and performance of the network.
Although the concept of pruning neural networks to enhance performance and efficiency is already
a popular discussion in the field [4, 5], the in-depth analysis of the effects of individual neurons,
particularly in terms of their unique contributions and potential redundancy, is not thoroughly
explored in existing literature. This gap highlights the novelty of our research, which, through a
series of experiments involving neural networks with varying configurations, elucidates the critical
role individual neurons play in complex pattern recognition tasks. Our findings offer insights into
the architectural nuances of neural networks and their operational dynamics, providing a more
granular understanding of neural network architecture and functionality.

2 Methodology
In this study, we undertook a detailed analysis to quantify the impact of individual neurons

on the overall performance of neural networks. The first neural network configuration, referred to
as NN_392, consists of a single hidden layer with 392 neurons, which is half the size of the input
layer for the MNIST dataset. The second configuration, NN_392_196, includes two hidden layers,
with the first layer containing 392 neurons and the second layer 196 neurons. These configurations
were selected to explore the effects of network complexity and depth on neuron significance.
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We conducted experiments using two well-known datasets: the MNIST and the SVHN. For the
MNIST dataset, we utilized a total of 70,000 instances, splitting them into 63,000 for training and
7,000 for testing, adhering to a 90/10% holdout. Similarly, for the SVHN dataset, we worked with
a total of 99,289 instances, allocating 73,257 for training and 26,032 for testing, reflecting a 74/26%
holdout. Each neural network configuration was trained separately on these datasets, utilizing the
scikit-learn package’s MLPClassifier. After training, we “removed” individual neurons from each
configuration by setting their weights and biases to zero and then proceed to analyze the accuracy
change on the network without that neuron. This process was repeated for all hidden neurons and
allowed us to measure the impact of each neuron’s removal on the network’s accuracy on a fixed
test set for both the MNIST and SVHN datasets.

Our analysis extended beyond merely assessing the influence of individual neurons. We also
visualized the weight distribution of the most “rotten” or least contributing neurons, compared
the influence of neurons across different layers, and examined the impact of each synapse of the
identified “rotten” neurons. Through this comprehensive approach, we aimed to shed light on the
intricate dynamics of neural network functionality and the critical role of individual neurons in
complex pattern recognition tasks.

3 Results

3.1 Model NN_392
The visualizations presented in Figures 1 and 2 effectively illustrate the differential impact

of individual neurons on the model’s predictive accuracy for the MNIST and SVHN datasets,
respectively. Each neuron’s influence is plotted in ascending order, revealing the diverse spectrum
of contributions towards the network’s performance.

For the MNIST dataset, the network demonstrated a high training accuracy of 99.78%. With
all neurons active, the test accuracy was recorded at 98.06%, which slightly improved to 98.10%
upon the removal of the most “rotten neuron”. This subtle increase hints at the presence of specific
neurons that detract from overall performance. Out of the 392 neurons, analysis revealed that 255
neurons (65.05%) had a positive impact, 106 neurons (27.04%) had no impact, and 31 neurons
(7.91%) had a negative impact on the network’s accuracy.

Figure 1: Impact of Neuron Removal on Accuracy on the MNIST dataset. The horizontal red line denotes
no change in accuracy. Source: Author.
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In contrast, the SVHN dataset, with its larger and more complex color images, presented
different challenges, as reflected by the lower training and test accuracies of 65.07% and 59.83%,
respectively. In this network configuration, 392 neurons were analyzed, with 10 neurons (2.55%)
showing a positive impact, 382 neurons (97.45%) showing no change, and notably, 0 neurons
(0.00%) showing a negative impact on accuracy. This uniformity in the neuron impact distribution
suggests that for more intricate datasets like SVHN, individual neurons may not exhibit detrimental
effects on performance as noticeably due to the network’s limited capacity to encapsulate the
complexities of the data fully.

Figure 2: Impact of neuron removal on accuracy on the SVHN dataset. The horizontal red line denotes
no change in accuracy. Source: Author.

In the MNIST dataset, a detailed examination was conducted on Neuron 137, which was iden-
tified as having the most substantial negative impact on network performance. Termed a “rotten”
neuron, it was uniquely characterized by its consistent contribution to degrading the model’s pre-
dictive accuracy. A visualization of Neuron 137’s weights, formatted as a 28x28 image (Figure 3),
revealed a pattern analogous to a circled cloud of mixed pixels. This pattern lacks the coherent
features typically associated with effective predictors and is indicative of its negative influence on
the network’s classification ability. In contrast, such a distinctive “rotten neuron” was not observed
in the SVHN dataset, where no single neuron demonstrated a clear and singular adverse effect on
the network’s accuracy.

Additionally, we identified four specific instances where Neuron 137 involvement led to in-
correct classifications (Figure 4). These instances were particularly challenging, even for human
interpretation, supporting the notion of the neuron’s detrimental effect.

Subsequent experiments involved deactivating individual synapses (weights) of the “rotten neu-
ron” to assess their impact (Figure 5). This granular approach revealed that certain synapses
significantly contributed to the poor performance of the neuron, although not to the same extent
as the whole neuron.
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Figure 3: Weights of Rotten Neuron 137. Source: Author.

Figure 4: Cases where ’Neuron 137’ makes the model classify incorrectly. Source: Author.
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Figure 5: Impact of Synapse Removal on the NN_392 model (MNIST). Source: Author.

3.2 Model NN_392_196

In the investigation of the NN_392_196 configuration, the complexity of having an additional
layer was examined. The results, depicted in Figures 6 and 7, outline the differential impact of
neuron removal on the accuracy of the model for both the MNIST and SVHN datasets.

For the MNIST dataset, the model achieved near-perfect training accuracy (99.95%) and high
test accuracy (98.21%). Upon the sequential deactivation of neurons, the first layer presented a
mixed influence on the model’s accuracy, with 39.29% of neurons leading to a decrease in accuracy
when removed, and 19.90% showing a positive impact when removed. The second layer, however,
had a more pronounced positive impact upon neuron removal, with 36.73% of neurons showing an
increase in test accuracy when deactivated and 39.80% showing a decrease. The most significant
positive change in accuracy from a single neuron removal was greater in the second layer (0.0011)
compared to the first (0.0007), as illustrated in Figure 6.

Figure 6: Impact of Neuron Removal, on both layers, on Accuracy on the MNIST dataset. The horizontal
red line denotes no change in accuracy. Source: Author.
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Conversely, the SVHN dataset, which poses more complex image recognition challenges, exhib-
ited distinct neuron impact patterns when analyzed with the NN_392_196 configuration. Only
5.61% of the neurons in the first layer decreased the model’s accuracy upon their removal. Notably,
no neurons in the first layer enhanced performance when deactivated. In the second layer, however,
10.71% of neurons showed a positive impact on accuracy when removed, while a substantial 77.55%
led to a decrease in accuracy. Furthermore, the most considerable positive change in accuracy was
observed in a neuron from the second layer (0.0022), which is notably double the maximum change
observed in the NN_392_196 MNIST model. However, this change might be misinterpreted due
to the different scales used in Figures 6 (MNIST) and 7 (SVHN). The addition of a second layer
also notably improved the accuracy of the SVHN model, resulting in a training accuracy of 87.94%
and a test accuracy of 80.31%.

Figure 7: Impact of Neuron Removal, on both layers, on Accuracy on the SVHN dataset. The horizontal
red line denotes no change in accuracy. Source: Author.

These observations suggest that in more complex network architectures, like NN_392_196,
the role of neurons in each layer may be more distinct, with the second layer possibly playing a
more critical role in refining the network’s output. The “rotten” neurons, particularly within the
second layer, have a more substantial impact on the model’s predictive accuracy for both datasets,
underscoring the importance of considering layer-specific dynamics in neural network analysis.

The analysis of the NN_392_196 configuration across both the MNIST and SVHN datasets
has elucidated the distinct roles that neurons play in each layer of a neural network. The second
layer’s neurons, in particular, have been highlighted as pivotal in refining the network’s predictive
accuracy, especially for more complex datasets. These insights underscore the delicate balance
required in network architecture design, where the depth and distribution of neurons must be
tailored to the complexity of the task at hand.

4 Conclusions

Our investigation into the role of individual neurons within neural networks has uncovered
a complex landscape of impacts across various configurations and datasets. We have identified
neurons that are pivotal to network performance, alongside those that appear neutral or even
detrimental—coined as “rotten” neurons.
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The concept of “rotten” neurons, primarily explored within the context of single-layer and
two-layer perceptrons in this study, opens the door for extensive research into more sophisticated
architectures. The potential existence of analogous “rotten” entities, such as filters in convolu-
tional neural networks (CNNs), cells in recurrent neural networks (RNNs), and heads in attention
mechanisms, suggests a universal paradigm that could influence a wide array of neural network
applications. Investigating these could yield crucial insights into optimizing feature extraction,
sequence processing, and model interpretability, respectively.

Looking forward, the methodology applied in this research offers a framework for further ex-
plorations into neural network inefficiencies. Future studies could extend our approach to various
neural network architectures, employing advanced techniques to systematically identify and mit-
igate the effects of “rotten” computational units. Such endeavors could not only enhance model
performance but also contribute to the creation of AI systems that are both more robust and
resource-efficient.
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