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Resumo. We present a mathematical model employing ordinary differential equations to model
the interaction dynamics between bacterial pathogens and Bacteriophages. Our model incorporates
a non-linear function with inhibitory effects to describe the infection dynamics within these popu-
lations. By utilizing the Lyapunov theory and the second additive compound matrix, we analyze
the stability of the model. Additionally, a global sensitivity analysis is conducted to identify the
most influential parameters. Parameter estimation is performed using growth data of Escherichia
coli (E. coli) bacteria in the presence of Coliphages, which are bacteriophages targeting E. coli, at
various levels of multiplicity of infection. Our findings reveal a critical threshold that determines
whether bacteriophage concentration will lead to coexistence with the bacterium or extinction of
the phages. The coexistence equilibrium is found to be locally asymptotically stable, while the
phages extinction equilibrium is globally asymptotically stable, contingent upon the magnitude
of this threshold. Furthermore, our analysis indicates that the infection rate of bacteria and the
half-saturation phage density significantly influence the dynamics of the model. Importantly, our
parameter estimation demonstrates the effectiveness of all multiplicities of infection in elimina-
ting infected bacteria, albeit with smaller multiplicities resulting in a higher residual population of
bacteriophages post-elimination.
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1 Introduction

Bacteriophages, also known as phages, are abundant viruses that target bacteria, with estima-
tes suggesting a total count of approximately 1031 viral particles, encompassing bacteriophages
[5]. These phages exhibit two primary life cycles: lytic and lysogenic. In the lytic cycle, phages
infiltrate host cells, replicate internally, and subsequently rupture the host cell to release progeny
virions. Conversely, in the lysogenic cycle, phages infect the host without immediate replication,
integrating into the host genome or existing as plasmids within the host cell. The genetic material
is then passed on to subsequent generations of bacteria [4, 8]. Phages have garnered significant
attention in medicine and industry for their applications in combating antibiotic resistance (phage
therapy), serving as delivery vehicles for vaccines, or facilitating the display of proteins and an-
tibodies [3, 7]. While phage therapy offers numerous benefits in addressing the global challenge
of multidrug-resistant bacteria, it presents only a few drawbacks, most of which can be mitigated
through careful phage selection, efficient formulation, and enhanced clinician knowledge and ap-
plication techniques [11]. Understanding the dynamics of phages and bacterial hosts from various
perspectives is essential to gain insight into the synergy within this interaction. Consequently,
numerous mathematical models employing ordinary differential equations have been proposed to
elucidate these dynamics. For example, Jain et al. investigated the dynamics of the lytic RNA
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phage MS2 and its E. coli host [9], while Beke et al. developed a mathematical model conside-
ring pH and temperature in the interaction between bacteriophages and their bacterial hosts [1].
Cairns et al. explored the non-linear kinetics between the pathogen bacteria Campylobacter jejuni
and a lytic phage, considering susceptible and resistant bacteria, infected cells, and free phage
particles [2]. Additionally, Ndongmo et al. presented a model considering the lytic and lysogenic
life cycles of phages and prophage induction in the interaction between phages and bacteria [13].
However, many of these studies either focus solely on mathematical developments without empiri-
cal validation or solely on empirical data without extensive mathematical analysis. In this study,
we propose a mathematical model considering a free lytic phage, sensitive bacteria, and infected
bacteria, where the incidence rate incorporates a saturation process due to free phages. We explore
the stability analysis of equilibrium points using the Lyapunov indirect method. Furthermore, we
conduct global sensitivity analysis to identify crucial model parameters and utilize data on the
growth of E. coli bacteria in the presence of coliphages to fit the model parameters using a genetic
algorithm, aiming to enhance understanding of the interaction between bacteria and phages.

2 Model formulation

Let E(t) and I(t) denote the populations sizes of sensitive bacteria and infected bacteria at
time t, respectively and C(t) the concentration of free phages at time t. Bacteria reproduce at a
constant per capita rate, which depends on the species of bacteria, in this study we consider the
E.coli bacteria type for make the simulations. We consider that there exists an intraspecific and
interspecific competition between sensitive and infected bacteria as population size increases and
resources become more limited, which is modeled by logistical growth with carrying capacity N
and reproduction rate k. For the interaction between bacteria and phages we consider the Holling
II functional response because we believe that there is saturation in the infection process, i.e., the
more free phages there are, the less sensitive bacteria there will be. In this sense the sensitive

bacteria acquire infection at rate βE
C

a+ C
, where β is the infection rate of bacteria and a the

half-saturation phages density, the mortality rate of this infected bacteria is υ. The free phages
growth proportionally to the concentration of infected bacteria I at rate αI, where α is the release
rate of viral particles and decay at rate λ. From the above suppositions we derive the following
system of non-linear differential equations

dE

dt
= kE

(
1− E + I

N

)
− βE

C

a+ C

dI

dt
= βE

C

a+ C
− υI

dC

dt
= αI − λC.

(1)

The summary of the parameters present in the model is shown in Table 1

3 Results

Define by R0 = βNα
λυa basic reproductive number, which interpretation is: One phage during its

average lifetime, 1
λ , infects one sensitive bacteria, with rate βN , this infected bacteria releases α

υa
number of phage particles. In this way, R0 is the net number of phages produced by a phage in a
lytic cycle, in a concentration of sensitive bacteria.
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Tabela 1: Model parameters.

Parameter Definition Range Value Reference
k bacterial growth rate [0.4, 1.8] 1.11 This study
N carrying capacity [2.5, 4] 3.2 This study
β The infection rate of bacteria [1, 20] Estimated for different MOI -
a Half-saturation phages density [0.07, 20] Estimated for different MOI -
υ Lysis rate of infected bacteria [0.05, 4] 1.002 [9]
α The release rate of viral particles [1.4, 1.8] 1.63 [1]
λ decay rate of viral particles [0.0003, 2] 1.032× 10−2 [2]

3.1 Equilibrium points and stability
In this section, we determine the asymptotic stability of the equilibrium solutions of the system

(1).

Proposition 3.1. System (1) always has a trivial equilibrium P0 = (0, 0, 0) and the equilibrium
point P1 = (N, 0, 0). If R0 > 1, there exists an equilibrium P2 = (E∗, I∗, C∗), in which E.coli
sensitive, E.coli infected and bacteriophages co-exist.

Proposition 3.2. The trivial equilibrium P0 is always unstable and the equilibrium P1 is locally
asymptotically stable if R0 ≤ 1, and unstable otherwise.

Proposition 3.3. If R0 ≤ 1, the equilibrium point P1 is globally asymptotically stable in Ω.

Proposition 3.4. If R0 > 1 and R0 < k
λ (k > λ), the point P2 is locally asymptotically stable.

3.2 Sensitivity analysis
In order to determine which are the parameters that most affect the competition dynamics

between sensitive and infected bacteria with bacteriophages, we use the methodology proposed
in [12]. We concluded that the more influential parameter in the model are the infection rate of
bacteria (β) and Half-saturation phages density (a). The parameter β helps to increase the density
of infected bacteria and the density of phages and decrease the density of sensitive bacteria. while
the parameter a plays an inhibitory role, the larger it is, the less number of free viral particles will
infect sensitive bacteria, which implies a smaller number of infected bacteria.

3.3 Parameter estimation
We select the parameters β and a to be estimated using experimental data published in [10], in

particular those for E.coli ATCC® 11775™ (gram-negative) and T4-like A coliphages, where they
elaborate curves for bacterial growth curves in the presence of bacteriophages using the MOI 0.01,
0.1 and 1 to compare and analyze the activity of bacteriophages. Since the data in [10] only show
the total remaining bacteria, i.e., the data used do not distinguish between infected and susceptible
bacteria, nor does it show coliphages growth data, we find the least square between the data and the
sum of sensitive and infected bacteria E(t)+I(t). To do this, we use a evolutionary algorithm called
genetic algorithms (ga) where the function to minimize was fmin(β, a) =

∑
i{datai−[E(i)+I(i)]}2,

where E(t) and I(t) are the outputs of the model (1), for an explanation of how the ga works see
[6].

The estimates of these parameters are shown in the Table 2 and the curve fits is shown in the
Figure (1a).
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Tabela 2: Parameter estimation for different MOI.

MOI β a Initial condition [S(0) I(0) C(0)]
0.01 2.6 0.22 [0.24 0 0.0024]
0.1 3.81 0.4428 [0.19 0 0.019]
1 18.92 6.68 [0.18 0 0.18]

(a) (b)

Figura 1: The Figure (1a) shows the estimated growth curve of susceptible E.coli bacteria and
infected E.coli bacteria in the presence of coliphages when the MOI is 0.1 and (1b) shows the
growth curves of each population.

4 Discussion
The intricate relationship between bacteriophages and bacteria holds significant relevance in

the context of antibiotic resistance, yet its complexity is described by various dynamics at diffe-
rent levels. We formulated a mathematical model considering populations of sensitive bacteria,
infected bacteria, and bacteriophages, employing a nonlinear function with an inhibitory effect for
the incidence rate. Three possible outcomes for the bacteria-phages relationship were identified:
simultaneous extinction of uninfected bacteria, infected bacteria, and phages (trivial equilibrium);
extinction of infected bacteria and phages (bacteriophages extinction equilibrium); and coexistence
of sensitive bacteria, infected bacteria, and phages (coexistence equilibrium). Local stability analy-
sis using Lyapunov’s indirect method and the second additive compound matrix revealed that the
trivial equilibrium is always unstable, while the phages extinction equilibrium is locally asympto-
tically stable when the reproduction number R0 is less than or equal to 1, and unstable otherwise.
The coexistence equilibrium is locally asymptotically stable when R0 is greater than 1 and less than
k/λ. However, based on our calculations, this inequality is a sufficient but not necessary condition
for stability, as our simulations suggest stability may occur when R0 > k/λ. Interestingly, despite
good curve fits, parameter estimation revealed instability due to k > λ and R0 > k/λ, with the
eigenvalues of the Jacobian matrix having complex conjugates with a positive real part, resulting
in oscillations persisting over time. Sensitivity analysis highlighted the infection rate of bacteria
(β) and half-saturation phage density (a) as the most influential parameters, with β increasing the
density of infected bacteria and phages while decreasing the density of sensitive bacteria, and a
playing an inhibitory role by reducing the number of free viral particles infecting sensitive bacte-
ria, leading to fewer infected bacteria. Moreover, model and parameter estimation indicated higher
growth of E. coli bacteria at a lower multiplicity of infection (MOI), with implications including
slower coliphage growth and prolonged bacteria extinction time.
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