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Abstract Due to the chaotic behaviour of the differential equations which model the problem of
predicting ocean waves variables, a well know strategy to overcome the difficulties is basically to
run several simulations, by for instance, varying the initial condition, and averaging the result of
each of these, creating an ensemble. Moreover, in the last few years, considering the amount of
available data and the computational power increase, machine learning algorithms have been applied
as surrogate to traditional numerical models, yielding comparative or better results. In this work,
we present a methodology to create an ensemble of different artificial neural networks architectures,
namely, MLP, RNN, LSTM, CNN and a hybrid CNN-LSTM, which aims to predict significant wave
height on five different locations in the Brazilian coast. The networks are trained using NOAA’s
numerical reforecast data and target the residual between observational data and the numerical
model output. A new strategy to create the training and target datasets is demonstrated. Results
show that our framework is capable of producing high efficient forecast, with an average accuracy
of 80%, and a increasingly reduction of computational cost.
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1 Introduction

Numerical simulations of both weather and ocean parameters rely on the evolution of nonlinear
dynamical systems that have a high sensitivity on initial conditions. Considering that errors in
the observations and analysis are present, and therefore in the initial conditions, the concept of
a unique deterministic solution of the governing equations becomes fragile [6, 11]. To circumvent
this drawback, one can use an ensemble of simulations with different initial conditions, to represent
the uncertainty of the data, and generates different solutions in which its average can provide a
better understanding of the medium range behaviour of the system.

Albeit mathematical-physical models can be solved using traditional numerical solvers, the
amount of available quality data prompt the use of machine learning algorithms as an low-cost
alternative, achieving better performance in a computational time that is incredibly reduced. In
this sense, artificial neural networks (ANNs) are one of the most promising tools for numerical
simulations and act as an important alternative to problems with random patters such as those
found in ocean modelling [10, 12].

Benefiting from both the advantages of using ensemble and artificial neural networks, we aim
to provide in this work a new methodology to forecast significant wave height Hs on five different
locations in Brazilian coast. We build five different architectures of artificial neural networks in
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which each predicts the residual between the observed value and Hs output from a numerical
model. The prediction of a variable residual instead of its actual value has an advantage when
using neural networks within ensemble predictions, as the final result will be added to the ensemble
mean (EM), in the training process, the parameters of the activation function will only update
the EM deviates from the target value [2, 3]. The final result is calculated by averaging Hs from
the different neural network architectuPROGRAMAÇÃO GERALres, which is reconstructed by
adding a forecast Hs with the neural network residual.

2 Ensemble methodology
Artificial neural networks (ANNs) are a kind of machine software that is designed to model

the way in which the brain performs a particular task, and is able to learn and generalize huge
sets of data [9]. From a mathematical standpoint, they can be considered as multiple nonlinear
regression methods able to capture hidden complex nonlinear relationships between input and
output variables [14].

In its simplest form, know as the perceptron, the structure of an ANN is based on a unit, or
neuron (yk), which receives a linear combination of weighted input and bias, i.e [9],

yk = ϕ

 m∑
j=1

ωkjxj + bk

 (1)

where ωkjxj for each j consists of the multiplication of the synaptic weight ωkjxj and the data
xj and bk indicates the bias, which has the effect of increasing or lowering the net input of the
activation function ϕ. As we aim to make our network accountable for non-linear dependencies, the
activation functions need to be also non-linear, such as the log sigmoid or the hyperbolic tangent
sigmoid functions. Nevertheless, this choice is user-defined and may depended on the application.

Several artificial neural network (ANN) architectures, based on layers of neurons, are possible.
Different approaches to how information circulates throughout the network are also possible. In this
work, we construct five different architectures of neural networks, namely, multilayer perceptron
(MLP), recurrent neural network (RNN), long short-term memory (LSTM), convolutional neural
network (CNN) and a hybrid CNN-LSTM, and average the results of each of these, to construct
an ensemble of neural networks. We invite the reader to the references [7, 9] to a full description
of the artificial neural networks used in this work.

As the use of neural networks to predict a residual has already been discussed and applied with
satisfactory results [2, 3], we propose a different methodology to construct the datasets that will
be used to train each of the neural networks mentioned in the previous section. The target, i.e.,
the variable that will be predicted is the residual of the significant wave height Hs, calculated as
the difference between the real observed value and the forecast output of a numerical model. We
consider the net residual, and not the absolute values, to account for negative values.

As the output of the neural networks consist of residuals, we reconstruct Hs by adding these
residuals to a numerical prediction of Hs for the respective forecast horizon. We opted for this
framework because allows us to generate an operational forecast that can be used on a daily basis.
Afterwards, an average of the five Hs results is calculated which yields the final result of the
algorithm’s prediction.

3 Creating the training datasets
Figure 1 shows a schematic of the training methodology developed. In this framework, we

build a feature dataset, in which each column have a numerical time series forecast for a specific
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lead time. First column contains data from 3-hour lead forecasts of Hs, column two, 6-hour lead
forecasts, and so on until the n−th column. Each row of this dataset represents a date and time,
and its length define the size of the training phase. For the target dataset, each element (i, j) will
be the residual between the numerical model in the features dataset at position (i, j) and the real
measured data obtained from the buoy at that date and time. In this sense, the predictions of
the neural network will be of one row and n columns, in the time position immediately following
the last row of the target dataset. Therefore, the network will have predicted the residual, and
considering each of the lead times of the columns, as it was constructed in the features dataset.

Figure 1: Schematic of the methodology for training applied in this work. Here, t1, . . . , tf represents
the time series. In the target dataset, Ei represents the different between the numerical model
forecasts from columns Fi and buoy data. The Fi columns are numerical model forecast on a
specific lead time (column i = 1, lead time is 3hrs, i = 2, lead time is 6hrs, and so on until the
n−th column). Source: from the authors.

In the training phase of every neural network, a cross-validation scheme was implemented,
where 80% of the data is selected for the training and 20% for validation. This strategy is an
excellent framework to avoid overfitting of a model, i.e., a model that yields a good accuracy to
the validation set (seen data) and a bad result to unseen data. Since we are training with time series
data, the order of events is important, which can be a problem when using cross-validation. To
circumvent this issue, we perform a cross-validation on a rolling basis, where the training dataset
is divided into smaller batches of data, and the cross-validation is applied to these batches. We
train in a subset of data and then forecast the later data points of the batch to check accuracy.
The same forecasted data points are then included as part of the next batch of training. This
strategy also avoid excess in the memory usage of the training phase. To define the batch size,
several simulations were performed, and a optimal value of twelve data points was obtained.

The Python library TensorFlow [1] and its Keras API [5] are used in this work to implement
the neural networks. The model is compiled using the mean absolute error as loss function which
is optimized by the Adam algorithm. The networks are build with six hidden layers (the hybrid
CNN-LSTM has six hidden layers for each of the architectures) and the hyperbolic tangent is
used as activation function, to account for negative values of the residual. A similar structure of
simulation had already been used with satisfying results [12].

4 Data and area of study
The objective of our work is to forecast significant wave height Hs. The framework described

in the previous section is used to predict the residue between numerical and observational Hs

data, which later is reconstructed by adding these residuals to a numerical prediction of Hs. We
use NOAA Wave Ensemble Reforecast data [4] as input, which is a 20-year global wave reforecast
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generated by the WAVEWATCH III model, forced by NOAA’s Global Ensemble Forecast System
(GEFSv12) [8]. The wave ensemble was run with one cycle per day, spatial resolution of 0.25o×0.25o

and temporal resolution of three hours. The forecast range is sixteen days, which is also the same
range in which we perform the forecast using the neural networks in this work.

Data from five buoys are also used for this study. All of them are located in the Brazilian
coast, ranging from longitude 49° 86’W to 38° 25’W and latitudes 31° 33’S to 3° 12’S. These buoys
belong to the National Program of Buoys (PNBOIA) of the Brazilian Navy, which aims to collect
oceanographic and meteorological data of the Atlantic Ocean [13]. We interpolated data for missing
points in these datasets. The training (and consequently the prediction) period is also determined
to be the one with the least missing points. Table 1 presents the longitudes and latitudes of the
five buoys. One limitation of our work can be inferred from Table 1, which shows the depth, in
meters, of the buoys locations. Depending on the position, these can be considered coastal, which
is not the goal of the NOAA Wave Ensemble, designed for deep waters.

The prediction period varies for each buoy, since some of the buoys used in this work are on
maintenance and do not have real time data. We gathered this information for each buoy in
Table 1. The training period is from 2013 until each buoy’s prediction starting date. The results
are shown for every three hours, the same temporal resolution of the reforecast data.

Table 1: Geo-spatial latitude and longitude location of the five buoys used in this work, period of
prediction, water depth, WMO identification number and city of location in Brazil.

Longitude Latitude Period of prediction Depth (m) WMO City/State location
Buoy 1 49° 86’ W 31° 33’ S 20/02/2019 – 08/03/2019 200 31053 Rio Grande/RS
Buoy 2 47° 15’ W 27° 24’ S 30/10/2018 – 15/11/2018 200 31231 Itajaí/SC
Buoy 3 42° 44’ W 25° 30’ S 28/04/2018 – 14/05/2019 2164 31374 Santos/SP
Buoy 4 34° 33’ W 8° 09’ S 31/10/2015 – 16/11/2015 200 31229 Recife/PE
Buoy 5 38° 25’ W 3° 12’ S 08/04/2018 – 24/04/2018 200 31229 Fortaleza/RN

5 Results and discussion

In this section, we present the results of the prediction carried out with the ensemble of arti-
ficial neural networks that was described above (referred as NN ensemble in what follows). The
residual that is the target of each simulation is added to a numerical forecast from NOAA Wave
Ensemble Reforecast. To analyse the accuracy of our results, we evaluate the performance of our
proposed model with three metrics: mean absolute percentage error (MAPE), mean absolute error
(MAE) and the root mean squared error (RMSE). All the metrics are calculated against buoy data
observations.

Figures 2 and 3 illustrate the comparison results between observed data, NOAA reforecast
numerical model and this work ensemble of neural networks. As we can see, there is no quantitative
improvement in the MAPE metric if we compare the numerical model and the neural networks
ensemble. Buoys locations at Santos (Fig 2, middle) and Recife and Rio Grande (Fig. 3, upper
and bottom) show the greatest discrepancy; the first and the second with a better accuracy for the
NN ensemble while the third with a quantitative similar result to the numerical model..

Figure 2 highlights how the NN ensemble fails to predict Hs peaks in buoy location at Itajaí.
The reason might be because we are training the models and reconstructing Hs with data from
NOAA numerical simulation and since global wave models are known to not represent extreme
events very well, the pattern is also learned by the neural networks. The poor representation of
peaks is also seen in other buoy locations, and this could be addressed as one of the drawbacks
of the proposed methodology. It is well known that, in the numerical forecast of ocean waves,
peaks, storms and extremes events are difficult to predict. The training of the neural networks are
based on the NOAA numerical results, which can explain the limitation. Also, data imbalance,
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Figure 2: Comparison between real observed data, NOAA reforecast numerical simulation and
this work ensemble methodology. Numbers in the legend refers to MAPE metric. Upper: Itajaí,
Middle: Santos, Bottom: Fortaleza. Source: from the authors. Source: from the authors.

since peaks and storms represent a small portion of the training dataset, as well as the use of a
numerical global model, are others problems that prevents from getting better results.

One can also see that the ensemble in fact learn and predict a residual that is variable according
with the initial error, as the graphs show, and although in the beginning of the prediction both
numerical and NN have the same behaviour, later on the prediction period the lines get apart from
each other, specially where the numerical model is known to lose accuracy, the ensemble of neural
networks maintains it. The results show also the same pattern of balance in the error if one looks
at the metrics MAE and RMSE, as can be seen in Tab. 2. However, the cost of simulation for
the ensemble is vastly reduced compared to the numerical simulation, which can be seen as an
advantage. For each neural network architecture, our algorithm took approximately 32 minutes
for training and the prediction of a single time value took 2.62× 10−6 seconds. Thus, the sixteen
days predictions period (128 steps) took 3.35× 10−4 seconds. The simulations were performed in
a machine with Intel Xeon processor with 20 cores, 128 Gb of RAM memory, with a GeForce RTX
2080 Ti graphics card. We parallelize all the training and prediction step, so the results for each
architecture are given in the same time.
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Figure 3: Comparison between real observed data, NOAA numerical simulation and this work
ensemble methodology. Numbers in the legend refers to MAPE metric. Upper: Rio Grande,
Bottom: Recife. Source: from the authors.

Table 2: Error metrics for each buoy locations. Comparison between ensemble neural network and
NOAA numerical model against real observational data.

Error metrics Itajaí Santos Fortaleza Rio Grande Recife
NN NOAA NN NOAA NN NOAA NN NOAA NN NOAA

MAPE (%) 17.32 15.42 19.23 24.73 11.29 12.19 23.8 23.67 19.77 23.92
MAE (m) 0.40 0.40 0.30 0.39 0.17 0.17 0.44 0.44 0.28 0.34
RMSE (m) 0.56 0.56 0.38 0.55 0.21 0.22 0.58 0.57 0.31 0.38

6 Conclusions

We propose in this work a surrogate methodology to traditional numerical models creating
an ensemble of different architectures of artificial neural networks. The results shows that our
framework have a good accuracy with metrics that are comparable or, for some cases, superior than
the NOAA numerical model. Also, the neural networks ensemble does not reproduce the behaviour
of loosing accuracy as the lead time forecast increase, a well known drawback of numerical models.
Comparing our result with the historical error of NOAA numerical data for each lead time, we also
see an improvement in the performance. The difference in the results between each of the neural
network architecture also shows that the strategy of using an ensemble was appropriate. Another
major contribution of the present work is that it is the first one to use NOAA Wave Ensemble
reforecast data, a large dataset that carries real information on the decay of skill as a function of
the forecast lead time, which allows a better discussion about prediction.

Although our model gives highly accurate predictions, there are some limitations in the results,
such as the forecast of peaks. From the neural networks perspective, the architectures that behaved
poorly in the simulations should be removed from the set to improve the ensemble results. Since
there is not a pattern on which architecture is worst for each location, we want to show in this
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work that the ensemble methodology can improve, if the right networks are chosen. Besides, as
mentioned in the text, we considered numerical simulations from a global wave model, in coastal
locations that are not suitable for these. All these issues will be addressed in future works.
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