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Fractional Model in Dengue with Real Data
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Abstract. The aim of this study is to bring forward a fractional model for Dengue, incorporating
the effects of temperature and rainfall variations throughout the year. In addition, real data from
Dengue cases in the city of Bauru, state of São Paulo, Brazil, were used to estimate the case
curve with the fractional model using the Intraclass Correlation Coefficient (ICC) to measure the
estimation accuracy. The results showed that the parameter estimation of the fractional model has
a higher ICC than the numerical simulations of the classical model, demonstrating greater accuracy
of the fractional model. Furthermore, a sensitivity analysis of the R0 parameters was carried out
using the Partial Rank Correlation Coefficients (PRCC) method to evaluate which parameters have
the greatest influence on the increase or decrease in the basic reproduction number. According to
the sensitivity analysis carried out, we can conclude that the most effective control to reduce R0

are the efforts directed to the vector.
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1 Introduction

Dengue is a viral disease caused by a virus belonging to the Flaviviridae family and Flavivirus
genus. The dengue virus has four distinct serotypes: DENV1, DENV2, DENV3, and DENV4.
Transmission to humans occurs through vectors, specifically mosquitoes of the Aedes aegypti and
Aedes albopictus species. In Brazil, the spread of the disease primarily occurs through the Aedes
aegypti mosquito, which is predominantly found in urban areas.

Female Aedes mosquitoes deposit their eggs in stagnant water, preferably in containers such as
cans, empty bottles, tires, gutters, and uncovered water tanks. The incubation period for the eggs,
known as embryogenesis, lasts approximately three days, followed by hatching, which is influenced
by environmental factors such as temperature and air humidity. The resulting larvae feed on
organic material in the environment, with the duration of the larval stage varying depending on the
availability of this substrate. The pupal stage, averaging around two days, precedes metamorphosis,
leading to the emergence of adult mosquitoes. Their diet is based on carbohydrates from sap, fruits,
and flowers, with only females being hematophagous and feeding on blood to supplement specific
nutrients.

In the context of infectious diseases, mathematical modeling plays a crucial role, significantly
contributing to the understanding of both cellular dynamics and the spread of diseases in the
population. Specifically, in the case of dengue, numerous mathematicians, epidemiologists, and
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researchers worldwide have dedicated themselves to utilizing real data, curve fitting, and predicting
the evolution of disease transmission in various locations [10, 13].

Despite remarkable advances in understanding the dynamics of dengue transmission through
Ordinary Differential Equation (ODE) models, especially for outlining control strategies, the in-
creasing complexity of ODE models required to refine the viral dynamics description poses chal-
lenges in obtaining analytical solutions [10]. This can be a significant limitation to the progress of
knowledge about the disease.

In this context, Non-Integer Order Calculus, commonly known as Fractional Calculus (FC),
emerges as a fundamentally important element, characterized by the study of integrals and deriva-
tives of non-integer order [2]. Despite the lack of direct physical and geometric interpretations
for fractional derivatives and integrals, fractional differential equations are inherently related to
systems with memory, given the non-local nature of fractional derivatives [12]. The presence of
memory processes in biological systems and the ability of fractional differential equations to reduce
errors arising from neglected parameters in real-life phenomena modeling highlight its relevance.

In this article, we propose a fractional generalization of a classic dengue transmission model,
accompanied by a sensitivity analysis of parameters, aiming to outline control strategies.

2 Fractional Model in Dengue with Aquatic Phase

The proposed compartmental mathematical model presents the interactions between humans
and mosquitoes and also the aquatic phase of the mosquito that includes egg, larva, and pupa
stages. Humans are subdivided into three compartments: susceptible (HS), infected (HI) and
recovered (HR), with constant H = HS + HI + HR. The Aedes mosquito population will be
divided into an aquatic phase (A) and an adult phase (M), which is subdivided into susceptible
(MS) and infected (MI) mosquitoes, with M = MS +MI . The subsequent ODE model, presented
by Costa [5], is herein extended to encompass a non-integer order model denoted by the parameter
γ, along with the inclusion of a dimensional tuning parameter denoted as τ . The generalization1

for the Fractional Differential Equation (FDE) is given by
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[
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(1)

The biological parameters of the model are described in [5] with the addition of the parameter
µ′
M which is additional vector mortality rate.

In the present work, we seek to use the ODE model (1) proposed by Costa [5], carry out its
fractional generalization with numerical simulations and sensitivity analysis of the parameters of
R0, the basic reproduction number.

1The interested reader is directed to consult the fractional generalization method outlined in Theodoro [15] for
further elucidation on the proposed extension
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3 Model Incorporating the Effects of Temperature and Rain-
fall Variations

During the year, temperature and rainfall are not constant. Therefore, in accordance with the
findings of Costa [5] we can incorporate the effects of temperature and rainfall variations in the
parameters. Furthermore, as suggested by Huber et al. [8] we can represent temperature and
rainfall throughout the year through the following functions:

T (t) =

(
Tmax − Tmin

2

)
cos

(
2π

365
t

)
+ T med, and ω(t) =

(ωmax

2

)
cos

(
2π

365
t

)
+

(ωmax

2

)
, (2)

where Tmax is the average of maximum temperatures, Tmin is the average of minimum temperatures,
T med is the average of the year’s average temperatures, and ωmax is the annual maximum daily
precipitation in millimeters.

Therefore, we have parameters dependent on temperature and rainfall:

δ(T ) = −15.837 + 1.2897T − 0.0163T 2,

b(T ) = 0.056 δ(T ),

βM (T ) = 0.033T − 0.41,

βH(T ) = 0.023T + 0.122,

µM (T ) = 0.8962− 0.159T + 1.116× 10−2 T 2 − 3.408× 10−4 T 3 + 3.809× 10−6 T 4,

µA(T ) =
2.13− 0.3797T + 2.457× 10−2 T 2 − 6.778× 10−4 T 3 + 6.794× 10−6 T 4

7
,

α(T ) = (0.131− 5.723× 10−2 T + 1.164× 10−2 T 2 − 1.341× 10−3 T 3 + 8.723× 10−5 T 4

−3.017× 10−6 T 5 + 5.153× 10−8 T 6 + 3.42× 10−10 T 7)/7,

C(ω) = Cmax

(
ω

ωmax

)
,

(3)

in which, T is the temperature in degrees Celsius, Cmax is the maximum carrying capacity of the
aquatic phase (fixed in the classical model simulation and estimated in the fractional model), ω is
the precipitation and ωmax is the maximum precipitation in millimeters.

We set the parameters µH = 3.46417 × 10−5, birth rate and death rate per capita, σ = 1/7,
human recovery rate, k = 0.8, ratio of male to female mosquitoes [6, 7, 11].

4 Numerical Simulations and Estimation of Fractional Model
Parameters

To analyze the accuracy of each simulation, we use the Intraclass Correlation Coefficient (ICC).
In this work, the ICC was calculated using a function implemented in MatLab and available at [14]
for free download. The categorization of ICC values is based on guidelines presented by Cicchetti [4]
is as follows: “Not acceptable” designates ICC values below 0.7; “Weak” corresponds to ICC values
ranging from 0.7 to 0.79; “Good” encompasses ICC values between 0.8 and 0.89; and “Excellent”
denotes ICC values falling within the range of 0.90 to 1. This classification serves as a reference for
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interpreting the reliability of the simulations, where higher ICC values indicate a more accurate
and reliable performance.

In Figure 1 we can see the comparison of the simulated curve with real data from Dengue cases
available in [16]. In this simulation, we set Cmax = 1 × 103 and µ′

M = 0.03. The ICC obtained
by this simulation was 0.6718, considered not acceptable. We can also observe that there is an
acceleration in the simulated case curve, in addition to a slightly higher peak than compared to
the real data.
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Figure 1: Numerical simulation of the classical model, i.e., γ = 1 and considering Cmax = 1× 103

µ′
M = 0.03. Source: By the authors.

In the fractional model (1), our primary outcome is centered around the estimation of important
parameters. Specifically, we have determined the non-integer order of the derivative, denoted as γ,
to be 0.9760. Additionally, the parameter τ , which governs the redimensionalization of FDE, was
estimated at 6.185 × 10−9. The maximum support capacity of the aquatic environment, denoted
as Cmax, was established as 1.371× 103, and the parameter µ′

M , signifying additional mortality in
infected and susceptible mosquitoes, was estimated to be 0.0397. It is noteworthy that the ICC
value obtained in this estimation process is 0.9731, a classification deemed excellent in accordance
with the criteria outlined by Cicchetti (1994) [4]. The Figure 2 hows the estimated curve of the
fractional model.

In Figure 2 we can see that the peak of the estimated curve does not coincide with the peak of
the real case data, this is because when observing the temperature and rainfall data for the year
2022 it is noted that 14 days before the dengue peak there were temperatures above 30◦C [1] in
an unexpected period (between the months of April and May) which contributed to an increase in
cases not predicted by the estimations made.

5 Sensitivity Analysis

The parameters in the proposed model are biologically interpretable but are also subject to
notable uncertainties, allowing for a diverse set of values. Consequently, a thorough investigation
of these uncertainties via Sensitivity Analysis (SA) techniques is necessary to discern how these
input parameters may influence the model’s responses. Specifically, the focus is on understanding
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Estimated curve of the fractional model with real Dengue data in the city of Bauru-SP
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Figure 2: Estimated curve of the fractional model, with γ = 0.9760, Cmax = 1.371 × 103 µ′
M =

0.0397. Source: By the authors.

how the parameters related to the basic reproductive number, R0, which measures disease spread,
can contribute to either the propagation or elimination of the disease. The R0 equation associated
to model (1) is given by

R0 =

√(
b2βMβHαC

H(µM + µ′
M )2(µH + σ)

)(
1− 1

Q0

)
, where Q0 =

kδα

(µM + µ′
M )(α+ µA)

. (4)

We conducted a SA considering the terms bβM , bβH , µM + µ′
M , µA, α, C, σ, and Q0 to assess

their impact on the R0 function. We employed the Latin Hypercube Sampling (LHS) technique
for parameter sampling, which involves subdividing the intervals of each input variable into N
equally spaced subintervals and belongs to the class of Monte Carlo sampling methods [9]. For
parameter sampling, we utilized N = 5000 sets of sampled parameters Xi = (bβM , bβH , µM +
µ′
M , µA, α, C, σ,Q0), evaluating the resulting Yi = R0. The PRCC [9], covering all sampled values,

were employed to provide a comprehensive assessment of the overall impact of the parameters.
The results of both analyses are depicted in Figure 3.

Figure 3 displays the results of the SA, where the findings reveal that the daily production of
humans infected by a mosquito, daily production of mosquitoes infected by a human, and aquatic
phase maturation rate play significant roles in increasing disease spread, leading to an increase
in R0 and these findings are biologically coherent. On the other hand, both vector population
mortality and additional mortality contribute to the reduction in disease spread. Remarkably, it is
observed that mortality in the aquatic phase, carrying capacity of mosquitoes in the aquatic phase,
and human recovery rate exhibit a weak correlation with the model outcome. This observation
suggests that these factors have a relatively small or insignificant contribution to the variation in
R0.

6 Conclusions
Fractional modeling emerges as an essential tool in the generalization of integer models, offering

not only an extension of them, but also the ability to make more accurate predictions in certain
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Figure 3: PRCC sensitivity analysis in the R0. Source: By the authors.

contexts, overcoming the limits of the classical model [3].
In this study, through numerical simulations and parameter estimation, we observed that the

fractional model (1) demonstrated superior accuracy compared to the classical model when analyz-
ing data on Dengue cases in the city of Bauru in 2022 [16]. Accuracy was assessed by the ICC, in
which values closer to 1.0 indicate better adherence to the observed data. The results revealed an
ICC of 0.9731 for the non-integer order model, contrasting with the ICC of 0.6718 for the classical
model, suggesting greater accuracy in the fractional version.

The sensitivity analysis of the parameters related to R0 showed that the factors that signifi-
cantly contribute to the increase in this basic reproduction number are b βH , b βM and α, which
represent, respectively, the number of infected humans produced by a single infected mosquito, the
number of infected mosquitoes generated by a single infected human, and the maturation rate of
the aquatic phase. On the other hand, the parameters µM +µ′

M , which represent the natural mor-
tality of mosquitoes throughout the year plus additional vector mortality (control), play a crucial
role in reducing R0.

Therefore, we concluded that, according to the proposed model (1), the most effective control
of the disease would be vector-directed. This conclusion highlights the importance of control
strategies aimed at the mosquito population as a fundamental approach in combating the spread
of Dengue.
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