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Abstract. The objective of this study is to analyze the dynamics of a tether system comprised
of two point masses interconnected by a cable (Space Tethers), orbiting a Newtonian center of
attraction in a Keplerian orbit without external forces. Through reductions in the equations of
motion, a Hamiltonian function is derived, and four stationary solutions are identified, two of
which are stable. The study delves into the parametric linear stability concerning the eccentricity
parameter (e) of the elliptical orbit and another parameter denoted as α, representing the angle
between the tether’s projection and the orbit plane. By employing the Deprit-Hori method alongside
numerical computations, the study maps stability and instability regions in the parameter plane
α× e.
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1 Introduction

The concept of using a long, robust cable to connect objects in space, such as satellites,
spacecraft, or space stations, to either the Earth’s surface or to each other, is not a new idea.
However, the engineering work required to implement this project was deemed impossible in the
mid-twentieth century, when implementation attempts began. Currently, the challenges associated
with constructing such structures still persist [1, 3, 4, 7, 8].

The first successful tether mission was the TSS-1R mission, launched by NASA in 1996. This
mission deployed a 20-kilometer-long tether from the Space Shuttle, which was used to study the
dynamics of tethered systems in space. Since then, there have been several other successful tether
missions, including the European Space Agency’s (ESA) Proba-2 mission in 2009 and the Japanese
Aerospace Exploration Agency’s (JAXA) Kounotori 6 mission in 2016.

Space tethers have a variety of potential applications, including space debris removal [5], satellite
deployment and retrieval [2], fuel optimization in orbital maneuvers for spacecraft [9]. However,
there are still many technical challenges that need to be overcome before space tethers can be
widely used. These challenges include developing materials that are strong enough to withstand
the harsh space environment and designing systems that can handle the forces and stresses involved
in tethered operations.
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In Santos’ analysis [10] concerning the dynamics of a tethered system, equilibrium conditions
were scrutinized for a configuration comprising a dumbbell structure, wherein two point masses
are interconnected by a cable of negligible mass and variable length. The motion within a planar
elliptical orbit is delineated relative to the system’s center of mass. The equations of motion were
derived utilizing Lagrangian mechanics, encompassing the kinetic and potential energies of the
system. Control laws governing the rotation angle around the center of mass were formulated, and
stability conditions were investigated using Floquet theory. Additionally, Santos [10, 11] extends
the analysis to encompass three-dimensional motion beyond the reference plane for the dumbbell
system.

This study aims to investigate the stability of uniformly rotating configurations of a dumbbell
interconnected by cables within a Newtonian central force field exhibiting Keplerian planar motion.
The system comprises two infinitesimal point masses orbiting elliptically around the primary body,
experiencing solely the gravitational force without any external influences. Utilizing the Hamilto-
nian dynamic system, equilibrium points will be analyzed, and the linear stability conditions of
the tethered system will be determined.

Moreover, as an illustrative application of this theoretical framework, the concept of a capture
network, also known as a space hub, will be explored. A capture network involves interconnecting
multiple spacecraft or satellites using tether systems to form a cohesive structure in space. By an-
alyzing the stability of such configurations, insights can be gained into the feasibility and practical
implementation of space hubs for various purposes, such as satellite servicing, orbital assembly,
and distributed sensing networks [6]. This application demonstrates the versatility and relevance
of the theoretical analysis in addressing real-world challenges and advancing space exploration and
technology.

2 Modeling the System
The Hamiltonian of a system is a mathematical function that characterizes the total energy

of the system. In the context of space tethers, the Hamiltonian incorporates the kinetic energy
of the masses tethered together, along with the potential energy associated with the tether itself,
considering factors such as deformation or bending. This perspective complements prior investi-
gations [11], which focused on analyzing the Lagrangian of tether systems from various aspects.
Our approach involves examining the Hamiltonian of the dynamic system and assessing its lin-
ear stability concerning minor oscillations in orbital eccentricity. Additionally, the Hamiltonian
accounts for any external forces acting on the system, including gravitational, aerodynamic, and
electromagnetic forces. The analyzed system consists of two point masses (m1 and m2) connected
to each other by a cable of negligible mass, forming a halter-type system, in a Keplerian orbit
around the primary in reference frame with no external forces acting on the system.

To obtain the equations of motion of the system, the Lagrangian formulation is used, which
relates the potential and kinetic energies and the generalized coordinates of the masses, this method
avoids the need to know all the forces acting on the system and simplifies the mathematical analysis.
Its general equation is given by Eq. 1.

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= Qj , (1)

where qj are the generalized coordinates; by hypothesis no external forces are acting on the system
other than gravitational attraction, thus it is considered that Qj = 0, since the total energy of the
system is constant.

The Lagrange Equations of motion are ordinary differential equations, which describe the mo-
tions of mechanical systems under the action of forces, can be obtained by L = T − V . Where T
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is the kinetic energy and V is the potential energy.
For the following analysis, the generalized coordinates are φ and ψ. The system is only under

the gravity-gradient. These forces make a conservative system. Two equations can be obtained
based on those coordinates, where ()′ = d

dν utilizing the following transformation, as the motion
is assumed to be in a Keplerian orbit around the primary d

dt = ν̇ d
dν = ω0(1 + e cos(ν))2 d

dν .

(2)
cosψ

[
4(e cos ν + 1)l′(φ′ + 1) cosψ + l

(
2φ′′ cosψ(1 + e cos ν)

− 4(e cos ν + 1)(φ′ + 1)ψ′ sinψ + cosψ(3 sin(2φ)− 4e sin ν(φ′ + 1))
)]

= 0

(3)
8(1 + e cos ν)l′ψ′ + l

[
2φ′ sin(2ψ)(2 + φ′)(1 + e cos ν)

+ sin(2ψ)
(
5 + 2e cos ν + 3 cos(2φ)

)
+ 4(1 + e cos ν)ψ′′ − 8eψ′ sin ν

]
= 0

To find the equilibrium positions, the terms φ′ = 0, l′ = 0 and ψ′ = 0 are replaced in Eqs. 2
and 3, to obtain

φ′′ =
4e sin ν − 3 sin(2φ)

2(1 + e cos ν)
(4)

ψ′′ = − sin(2ψ)(5 + 2e cos ν + 3 cos(2φ))

4(1 + e cos ν)
(5)

The conditions to the equilibrium positions are obtained for φ′′ = 0 and ψ′′ = 0, also being
able to refer to them as static solutions, so the equilibrium happens when

ψ =
kπ

2
, k = 0, 1, 2, . . . , sin(2φ) =

4

3
e sin ν. (6)

Because of the symmetry of the problem, we can restrict the values of k to 0, 1, 2 and 3. For high
eccentricities (e), close to 1, prohibitive regions appear that do not have equilibrium solutions,
when ψ = π

2 , the equilibrium is dependent of e and ν and they are continuous and periodic for
e ≤ 0.75. When the eccentricity (e) exceeds this value, solutions are not found for the true anomaly
using this approach.

(7)

{
φ(ν) → 1

2

(
− sin−1

(
4
3e sin(ν)

)
+ 2πc1 + π

)
if c1 ∈ Z

}
{
φ(ν) → 1

2

(
sin−1

(
4
3e sin(ν)

)
+ 2πc1

)
if c1 ∈ Z

}}
2.1 Hamiltonian Function

The focus will be Eq. 5 with cos(2φ) = α, −1 ≤ α ≤ 1. Then, it turns into

ψ′′ +
5 + 2e cos ν + 3α

4(1 + e cos ν)
sin(2ψ) = 0. (8)

Since α depends on time ν, what we call equilibrium positions are, in fact, stationary solutions.
Also, beside α evolves with time, as a dynamical variable, the study is done for fixed values of
α ∈ [−1, 1], so we see α as a parameter.
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Let pψ = ψ′, then equation of motion in (8) is represented by an Hamiltonian system

ψ′ =
∂H

∂pψ
, p′ψ = −∂H

∂ψ
,

with Hamiltonian function given by

H(ψ, pψ) =
1

2
p2ψ − 5 + 2e cos ν + 3α

8(1 + e cos ν)
cos(2ψ). (9)

With the assumptions made so far, ψ′ = 0, φ′ = 0 and l′ = 0, by studying the Hamiltonian
function H around the stationary solutions ψ = kπ

2 , (k = 0, 1, 2, 3) and pψ = 0, with −1 ≤ α ≤ 1,
this means that we investigate the linear stability conditions for the stationary solutions in the
angle ψ associated with the parameters α and e, since α = cos(2φ) and the angle φ must attend
the conditions of Eq. 6.

In the case of stationary solutions ψ0 = π/2, (3π)/2 and pψ0 = 0, the rod of the dumbbell is
perpendicular to the plane of the orbit. Let,

x̂ = ψ + ψ0, ŷ = pψ + pψ0,

then the linearized Hamiltonian function in (9) around these stationary solutions are the same,
and given by

H(x̂, ŷ) =
1

2
ŷ2 − 5 + 3α+ 2e cos ν

4(1 + e cos ν)
x̂2. (10)

The case of circular orbit, when e = 0, these stationary solutions are unstable for all values of
α ∈ [−1, 1], because the characteristic polynomial of the 2× 2 matrix JG1 has real roots, where

J =

(
0 1
−1 0

)
,

and G1 is the Hessian matrix of the Hamiltonian function in (10) for e = 0.
For the equilibrium position ψ0 = 0, π and pψ0 = 0, the rod of the dumbbell is in the plane of

the orbit. By linearizing the Hamiltonian function in (9) around these stationary solutions, yields
the same Hamiltonian function

H(x̂, ŷ) =
1

2
ŷ2 +

5 + 3α+ 2e cos ν

4(1 + e cos ν)
x̂2. (11)

For the case e equal to zero, these stationary solutions are linearly Lyapunov stable for all the
values of −1 ≤ α ≤ 1, as the characteristic polynomial of the matrix JG2 has only imaginary roots,
±i

√
(5 + 3α)/2, where G2 is the Hessian matrix of H(x̂, ŷ) in (11) when e = 0.

3 Conclusion
Beginning with the challenge of managing a tether in a Keplerian orbit around a Newtonian

gravitational center, upon simplification, we arrive at the equations of motion (2) and (3). These
equations involve variables such as φ, denoting the rotation angle of the tether around its center of
mass within the orbital plane; ψ, representing the angle of elevation relative to the orbital plane;
the eccentricity parameter of the orbit, e; and the true anomaly, ν.

Stationary solutions occur when ψ = (kπ)/2 (k = 0, 1, 2, 3) and sin(2φ) = (4/3)e sin ν. Intro-
ducing a parameter α dependent on the angle φ, and employing a Hamiltonian function pertinent
to the problem, we investigate the stability conditions concerning ψ, with respect to α and e.
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Notably, for ψ = π/2 and ψ = (3π)/2, the stationary solutions prove to be unstable. However, for
ψ = 0 and ψ = π, the stationary solutions demonstrate stability. In the scenario of stable station-
ary solutions, we delve into the conditions of linear stability by delineating curves that demarcate
regions of stability and instability in the parameter plane of α× e. Analytically, we compute these
curves for sufficiently small values of e, while resorting to numerical methods for arbitrary values
of e.
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