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Abstract. The expectation–maximization (EM) algorithm, often used for maximum likelihood
estimation, has not seen much application in addressing high-dimensional regularization challenges
within linear mixed-effects models. This study introduces the EMLMLasso algorithm, which merges
the EM algorithm with the widely used and efficient R package glmnet, enabling Lasso variable
selection for fixed effects in such models. We thoroughly evaluate its performance, comparing it to
two existing algorithms from R packages glmmLasso and splmm. Our findings, based on simulations
and real-world cases, demonstrate the robustness and effectiveness of our approach, even when the
number of predictors (p) exceeds the number of observations (n). Notably, across most scenarios, the
EMLMLasso algorithm consistently outperforms both glmmLasso and splmm. Moreover, our method
is versatile and straightforward to implement, with the potential for extensions to include ridge and
elastic net penalties in linear mixed-effects models.

Keywords. EM algorithm, High-dimensional data, Mixed-effects models, R package glmnet, Reg-
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1 Introduction

The linear mixed-effects models (LMM) represent a significant statistical tool for analyzing
relationships between responses and covariates in clustered or longitudinal data scenarios [7]. This
approach finds widespread use across various domains such as genetics, health, finance, ecology,
and image processing, underscoring the need for selecting the most appropriate LMM for such
data. However, challenges arise when dealing with high-dimensional variable selection, where the
number of predictors (p) exceeds the number of observations (n) [4]. Despite advancements in
computational and statistical methods, selecting fixed effects in LMM remains a daunting task,
particularly under high dimensionality.
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Among the statistical methods proposed for variable selection, regularization-based approaches
stand out for their ability to simultaneously identify crucial variables. In the realm of fixed effects
selection within LMM, notable works by [10] and [6] employ L1-penalization to maximize the
penalized log-likelihood (PML) function through computational techniques. Moreover, there exist
various strategies for concurrently selecting fixed and random effects in LMM, like glmmLasso [6]
and splmm [13], which can offer comparative insights.

This work presents an approach for fixed effects selection merging the EM algorithm with PML
estimation using the Lasso penalty, with flexibility to extend the methodology to other types of
penalties. Leveraging the glmnet [5] package, which efficiently fits generalized linear models via
PML, our EMLMLasso algorithm determines the regularization path for the Lasso penalty. We use
the Bayesian Information Criterion (BIC) to identify the optimal tuning parameter. The resulting
model, comprising only non-zero fixed effects variables, can be easily fitted using established R
packages such as lme4 [2] or skewlmm [11].

2 Methods

2.1 The Linear Mixed-Effects Model

The normal linear mixed model (LMM) is specified as follows [7]:

Yi = Xiβ + Zibi + ϵi, (1)

where Yi = (Yi1, . . . , Yini)
⊤ is a ni × 1 vector of observed continuous responses for subject i, with

i = 1, 2, ..., n, Xi is the ni×p design matrix corresponding to the fixed effects, β of dimension p×1;
Zi is the ni× q design matrix corresponding to the q×1 vector of random effects bi; bi

iid∼ Nq(0, D)

is independent of ϵi
indep.∼ Nni

(0, σ2Ini
), the dispersion matrix D = D(α) depends on unknown

and reduced parameters α; and ϵi of dimension (ni × 1) is the vector of random errors.
To account for high-dimension problems, we allow the general framework where the number p

of fixed-effects regression coefficients can be larger than the total number of observations, that is,
p > n. To perform PML estimation in the general LMM specification from (1), we now present a
proposal based on the EM algorithm.

2.2 EMLMLasso Algorithm

Define a grid of possible values for λ. Traverse all values of lambda within this grid. The
algorithm initializes with the first fixed value for λ as follows:

Initialization
β(0) = arg minβ [(Y −Xβ)⊤(Y −Xβ) + λ||β||1]
σ2(0) = 1

n (Y −Xβ(0))⊤(Y −Xβ(0)),
D(0) = Iq,
b(0) = 0.
While the stopping criterion is not satisfied do
E-Step:

ỹ
(k)
i = yi − Zib

(k)
i , Λ

(k)
i = (D−1(k) + Z⊤

i Zi/σ
2(k))−1,

bi
(k) = 1

σ2(k)Λ
(k)
i Z⊤

i (ỹ
(k)
i −Xiβ

(k)),

λ
(k)
1 = 2λσ2(k).
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M-Step:
β(k+1) = arg minβ [(ỹ

(k) −Xβ)⊤(ỹ(k) −Xβ) + λ
(k)
1 Ψp(β)],

σ2(k+1) = 1
N [(ỹ(k) −Xβ(k))⊤(ỹ(k) −Xβ(k)) +

∑n
i=1 tr(ZiΛ

(k)
i Z⊤

i )],

D(k+1) = 1
n

∑n
i=1(b

(k)
i b

⊤(k)
i + Λ

(k)
i ).

end
The stopping criterion is defined using the Bayesian Information Criterion (BIC), determining

the optimal value of λ [12] and, finally, θ = (β, σ2, D).
The EM algorithm’s "E-Step" (Expectation Step) calculates the expectation of the complete-

data log-likelihood with respect to the distribution of the latent variables, given the observations
and the current parameter estimates, and the "M-Step" (Maximization Step) maximizes this expec-
tation calculated in the E-Step to update the parameter estimates. EMLMLasso can be summarized
as follows: first, a grid with possible λ values is defined (regularization parameter or parameter that
controls the penalty of coefficient estimates), then for each λ value in the grid, iterations are made
using the EM algorithm, in which the optimization of the β coefficients is done with the aid of the
R package glmnet and, finally, an optimal value of λ is selected using BIC, and the estimate of the
desired θ, for the selection variables. The main innovation of the EMLMLasso algorithm compared
to existing algorithms is the incorporation of the R package glmnet within the EM algorithm for
the optimization of the β coefficients, a simple method of adaptive regularization that improved
accuracy in situations of high dimensionality and multicollinearity.

3 Simulation Studies
This section evaluates the performance of the EMLMLasso algorithm in three scenarios, compar-

ing the results with the glmmLasso and splmm packages.
Due to page limitations for this article, we highlight the main results found in the evaluated

scenarios. More quantitative details about the scenarios can be seen in the article by [9].
In Scenario 1, with fixed effects (p = 9) and random effects (q = 2), both EMLMLasso and splmm

accurately identify significant variables (β1 and β2). However, glmmLasso tends to misclassify
non-significant coefficients. Root Mean Square Error (RMSE) values indicate that EMLMLasso and
splmm have similar performance, with glmmLasso slightly better. Results improve with larger
samples. Scenario 2 examines the impact of the presence of categorical covariates. Here, all
algorithms successfully identify significant variables. EMLMLasso demonstrates superior accuracy
in parameter estimation compared to glmmLasso and splmm. In Scenario 3, high-dimensional
predictors (p = 50) are analyzed. EMLMLasso consistently excels at accurately identifying significant
variables, with sensitivity values of 1 across all sample sizes. It outperforms other methods even
with estimates of β = 0. Sensitivity is generally higher but specificity is lower for all algorithms.
glmmLasso shows an offset between these measurements.

Furthermore, the use of 10-fold cross-validation reveals the superior performance of EMLMLasso
in the selection of fixed effects, with lower median, range and interquartile range of RMSE compared
to glmmLasso and splmm.

Overall, the EMLMLasso algorithm presents robustness and efficiency in variable selection, es-
pecially in scenarios involving high-dimensional predictors and categorical variables.

4 Application in Genetics
Gene expression experiments study how genes are turned on and off and how this controls

what substances are made in a cell. This dataset concerns the response of riboflavin (vitamin
B2) production of bacillus subtilis (b. subtilis), a single celled organism (bacterium) found in
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the human digestive tract. The final goal of researchers is to increase the riboflavin production
rate of b. subtilis by editing relevant genes. To facilitate this goal, we used the riboflavinV100
dataset, which contains the genes that most strongly influence the rate of riboflavin production
[10]. The data is provided by DSM (Switzerland) and made publicly available in the supplemental
materials of [4]. This dataset was previously analyzed by [10], [4], [3], [1], among others. We also
use glmmLasso to select relevant covariates for this dataset and compare the results with the ones
obtained via EMLMLasso.

Given the longitudinal character of the dataset, we consider the following linear mixed-effects
model:

yij =

100∑
k=1

βkxijk + β101tij + b0i + b1itij + ϵij , (2)

where the response variable is the log of the rate of riboflavin produced, and there are 100 covariates
representing the log of the expression level of 100 genes and the covariate time. This dataset consists
of n = 28 different strains (species subtypes) of b. subtilis measured between two and four times
over the course of 96 hours (ni ∈ {2, 3, 4}), totalizing 71 observations. We standardize the response
and all covariates to have mean zero and variance one.

In this application, the number of correlated covariates is larger. For this reason, we decided
to evaluate the results of the algorithms with two methods: 1) (Method 1) complete matrix X,
and 2) (Method 2) reduced matrix X∗. The matrix X, of dimension 71 × 101, is obtained from
the riboflavinV100 dataset. The reduced matrix X∗, of dimension 71 × 70, is obtained using the
package findLinearCombos in R, which removes columns that have linear combinations among
them in a matrix X.

Table 1: RiboflavinV100 dataset. Gene selections.
Methods Variable list
(a)glmmLasso TIME XHLA_at XHLB_at
(b)findLinearCombos + glmmLasso TIME
(c)EMLMLasso YHZA_at YHFH_r_at NADC_at

YPUF_at ACOA_at YPUD_at
YCGN_at YXLE_at YTGD_at
PURC_at XLYA_at YCGO_at
GSIB_at YTCF_at GAP_at
YRDD_i_at CARA_at YCIB_at
YOSJ_at ALD_at TRXA_at PCKA_at

(d)findLinearCombos + EMLMLasso TIME YHZA_at YRZI_r_at
DEGQ_r_at YXLE_at ARGF_at
YTGD_at GUAB_at AHPC_at
XLYA_at YCGO_at YTCF_at GAP_at

(e)splmm TIME YHZA_at YHFH_r_at
YRPE_at YCGN_at YXLE_at
ARGF_at XLYA_at YTCF_at
YTGA_at YTGB_at PCKA_at YCKE_at

(f)findLinearCombos + splmm TIME YHZA_at YHFH_r_at
YRPE_at YCGN_at YXLE_at
ARGF_at GUAB_at XLYA_at
YTCF_at YTGA_at

After running additional tests, for the estimation of λ in the glmmLasso, we considered a
sequence from 0 to 500 by 1, for the EMLMLasso, we used a sequence from 0.001 to 0.5 with length
out equal to 500, and a sequence from 1.541 to 1.701 by 0.001 for the splmm. When we work
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with the complete matrix X (Method 1), the optimal values for λ are 43, 0.22 and 1.557 for
glmmLasso, EMLMLasso and splmm, respectively. For the reduced matrix X∗ (Method 2), we kept a
sequence from 1.4 to 1.7, by 0.01 for the splmm. In this case, the optimal values for λ are 43, 0.404
and 1.41 for glmmLasso, EMLMLasso and splmm, respectively. Table 1 shows that with Method
1, EMLMLasso selected 22 genes, the glmmLasso selected 3 covariates, and the splmm selected 13
covariates. However, when we use Method 2, the EMLMLasso selected 12 genes and the covariate
TIME, the glmmLasso selected only 1 covariate, and the splmm selected 11 covariates. The selected
variables have these labels because they are the names given to the genes in the dataset. These
labels were made available by [4].

We use the riboflavinV100 dataset, the R package lme4, and fitted a LMM with the predictors
obtained with Method 1 and another with the predictors from Method 2, for each algorithm. We
used the R packages joineR, lme4, splines, and caret to perform the 4-fold cross-validation and
compare the predictive power of each method, calculating the mean squared error (MSE) of y as

MSEy = (y − ŷ)⊤(y − ŷ). (3)

(a) (b) (c) (d) (e) (f)
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Figure 1: RiboflavinV100 dataset. 4-fold cross-validation to evaluate performance using the mean
squared error defined in (3) of the glmmLasso, EMLMLasso and splmm algorithms. Scenarios (a),
(b), (c), (d), (e), and (f) as defined in Table 1. Source: by the authors.

When comparing the MSE results (see Figure 1) between matrix X (without applying the
findLinearCombos function) and matrix X∗ (with the application of the findLinearCombos func-
tion), the splmm algorithm performed better with matrix X in terms of a lower mean MSE value.
Conversely, the glmmLasso and EMLMLasso algorithms showed improved performance with matrix
X∗. Regarding dispersion, i.e., lower interquartile range of MSE, EMLMLasso showed better results
with matrix X, while the splmm and glmmLasso algorithms performed better with matrix X∗.
The results indicated that the EMLMLasso algorithm was more sensitive to the removal of linear
combinations, which impacted the MSE dispersion. In summary, when using the EMLMLasso al-
gorithm with matrices X and X∗, the median MSE values were close to zero (0.0124 and 0.0116,
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respectively), with lower dispersion observed for matrix X. Therefore, we conclude that a viable
strategy for achieving better predictive power is to use the EMLMLasso algorithm without applying
the findLinearCombos function (Method (c), which selected 22 covariates).

5 Discussion

In this work, we propose a novel algorithm for variable selection in linear mixed models based
on the EM algorithm and the Lasso penalty, where the Lasso estimation step depends on R pack-
age glmnet. We call the proposed algorithm EMLMLasso. Even though other complex solutions
have been proposed to deal with variable selection problems in linear mixed models under low
or high-dimensional settings, to the best of our knowledge, it is the first attempt to propose a
straightforward implementation relying on existing packages. We focus on the Lasso penalty, but
it certainly can be implemented for other kinds of penalties, such as ridge and elastic net. We
provide a publicly available R code to compute the methods introduced in this work, which is
available for download from GitHub at https://github.com/fernandalschumacher/EMLMLasso.

For comparison purposes, we chose to use the publicly available R package glmmLasso [6], which
is a well-known package for variable selection in generalized mixed-effects models, and splmm [13],
that fits linear mixed-effects models for high-dimensional data (p >> n) with penalty for both the
fixed effects and random effects for variable selection. Under three scenarios, we investigate the
performance of the proposed algorithm to select significant fixed effects through a set of simula-
tions. In the first scenario, we simulated covariates from the normal distribution and evaluated
the capability of the EMLMLasso, glmmLasso, and splmm algorithms to select the fixed effects. In
a second scenario, we evaluated the ability of the algorithms to select fixed effects in the pres-
ence of categorical covariates. In a third scenario, we consider a large vector of fixed effects and
evaluate the sensitivity and specificity of the algorithms. Finally, we use 10-fold cross-validation
to evaluate the performance of algorithms under a high-dimensional setting (p > n). The results
of the simulations demonstrated good properties of the proposed variable selection procedure.
The EMLMLasso algorithm outperformed glmmLasso, and splmm in the majority of the scenarios
considered, especially when evaluating the specificity.

We also analyzed one dataset applied in Genetics. These are gene expression data (p > n),
where we are interested in relevant genes responsible for increasing the production of the riboflavin
(vitamin B2) of bacillus subtilis, a bacterium found in the human digestive tract. In this study,
as the covariates are correlated and p > n, we evaluated the three algorithms by adopting two
configurations: 1) considering the original data and 2) using a function from R to eliminate linear
correlations. The EMLMLasso made the selection of genes under the two considered strategies and
presented the best predictive power.

The algorithm developed here does not consider censoring and/or missing responses, a typical
problem in longitudinal studies. [8] have proposed a likelihood-based treatment based on the EM
algorithm for parameter estimation in linear and nonlinear mixed-effects models with censored
data (LMEC/NLMEC). Therefore, it would be a worthwhile task to investigate the applicability
of variable selection in the context of LMEC/NLMEC models. The selection of the random effects
is also a topic of our future research.
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