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An Interior Subgradient Method for DC Programming with
Proximal Distance Regularization
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Abstract. This paper introduces an interior subgradient algorithm designed to tackle a specific
category of nonconvex minimization problems, specifically focusing on minimizing DC functions
(difference of two convex functions). The algorithm was inspired by the interior gradient method
proposed Auslender and Teboulle in [1].
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1 Introduction

Difference of convex functions (DC) programming is a powerful optimization framework gaining
traction in recent decades. By exploiting the structure of convexity, DC programming enables the
development of efficient algorithms for solving nonconvex optimization tasks. Its applications span
various domains including engineering, economics, and machine learning. Notable advancements
in theory and algorithms have propelled its growth, making it a promising avenue for tackling
challenging optimization problems with practical relevance.

Recently, some authors have been proposed some algorithms and numerical experiments do
study DC optimization problems in a lot of settings, see [5, 6, 8, 11–13]. To continue this path,
we present an interior subgradient method for DC programming. Our method was inspired by the
interior gradient methods presented in [1]. In our case, the method is applied for a DC function
instead of a convex function. We prove that every accumulation point of its generated sequences, if
any, is a critical point of a DC function over a nonempty, closed and convex set. Furthermore, with
some additional assumptions, the whole sequence converges to a critical point of a DC function.

The organization of the paper is as follows. In Section 2, some notations and basic results used
throughout the paper are presented. In Section 3, the two algorithms studied in this paper are
presented and the main results are stated and proved. Some final remarks are made in Section 4.

2 Preliminaries

In this section, we present several concepts of non-smooth analysis that will be useful throughout
this paper. The subdifferential of a convex lower semicontinuous (lsc) function f : Rn → R at x,
is defined by ∂f(x) = {v ∈ Rn : f(y) ≥ f(x) + ⟨v, y − x⟩,∀y ∈ Rn}. If f is strongly convex with
modulus ρ > 0, it is well known that, for all v ∈ ∂f(x), f(y) ≥ f(x) + ⟨v, y − x⟩ + ρ/2∥y − x∥2,
for all y ∈ Rn, and its subdifferential ∂f is strongly monotone with modulus ρ, i. e., for any
x, y ∈ Rn, v ∈ ∂f(y) and u ∈ ∂f(x), we have ⟨v − u, y − x⟩ ≥ ρ∥y − x∥2. Let f : Rn → R be a
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locally Lipschitz function at x̄ ∈ Rn with constant L > 0 and v ∈ Rn. The Clarke’s directional
derivative [4, page 25] of f at x̄ in the direction v, denoted by f◦(x̄; v), is defined as

f◦(x̄; v) := lim sup
t↓0 y→x̄

f(y + tv)− f(y)

t
,

and Clarke’s subdifferential [4, page 27] of f at x̄, denoted by ∂◦f(x̄), is defined as ∂◦f(x̄) :=
{w ∈ Rn : f◦(x̄; v) ≥ ⟨w, v⟩, v ∈ Rn}. If f is convex, the Clarke’s subdifferential coincides with
the classical subdifferential ∂f .

A lower semicontinuous function f : Rn → R, is called a DC function when there exist convex
functions g and h such that,

f(x) = g(x)− h(x),∀x ∈ Rn. (1)

The functions g and h are commonly called components functions of f . It is well known that a
necessary condition for x ∈ Rn to be a local minimizer of a DC function f is ∂h(x) ⊂ ∂g(x). In
general, this condition is hard to be reached, often such condition is replaced by a relaxed one,
namely points that satisfies ∂g(x) ∩ ∂h(x) ̸= ∅. Motivated by this condition and for the other
definitions of critical points for constrained problems, we have the following definition.

Definition 2.1. Let D be a closed and convex set and f : Rn → R be a DC function as in (1). We
say that a point x∗ ∈ D is a critical point of f in D if, there exist v ∈ ∂g(x∗) and u ∈ ∂h(x∗) such
that ⟨v−u, y−x∗⟩ ≥ 0, for all y ∈ D. The set S∗

D(f) denotes the set of the critical points of f in D.
Furthermore, we say that a point x∗ ∈ D is a Clarke-critical point of f in D if, f◦(x∗; y−x∗) ≥ 0,
for all y ∈ D. We denote by S◦

D(f), the set of the Clarke-critical points of f in D.

In the case of D = Rn, the definition of a critical point retrieves to the well-knwon condition
∂g(x∗)∩ ∂h(x∗) ̸= ∅. Furthermore, if h is continuously differentiable, we have S∗

D(f) ⊂ S◦
D(f), see

[4, Corollary 1, page 39].
In our approach, we choose a proximal distance d : Rn×Rn → R+∪{+∞} as the regularization

term. Such a well-known distance allows us to analyze the convergence of the algorithm under
various settings. Following [1], let us recall the definition of the proximal and induced proximal
distances.

Definition 2.2. A function d : Rn × Rn → R+ ∪ {+∞} is called a proximal distance with respect
to a nonempty convex open set C ⊂ Rn if for each y ∈ C it satisfies the following properties:

(d1) d(·, y) is proper, lsc, convex, and continuously differentiable on C;

(d2) dom d(·, y) ⊂ C̄ and dom ∂1d(·, y) = C, where ∂1d(·, y) denotes the subgradient map of the
function d(·, y) with respect to the first variable, where C̄ denotes the closure of C;

(d3) d(·, y) is level bounded on Rn, i.e., lim∥u∥→+∞ d(u, y) = +∞;

(d4) d(y, y) = 0.

For each y ∈ C, let ∇1d(·, y) denote the gradient map of the function d(·, y) with respect to
the first variable. Note that by definition d(·, ·) ≥ 0, and from (d3) the global minimum of d(·, y))
is obtained at y, which shows that ∇1d(y, y) = 0. We denote by D(C) the family of functions d
satisfying (d1)-(d4).

Next, following the approach presented in [1], we associate to a given d ∈ D(C) a corresponding
induced distance H that satisfies some desirable properties.

Proceeding Series of the Brazilian Society of Computational and Applied Mathematics. v. 11, n. 1, 2025.

DOI: 10.5540/03.2025.011.01.0340 010340-2 © 2025 SBMAC

http://dx.doi.org/10.5540/03.2025.011.01.0340


3

Definition 2.3. Given C ⊂ Rn, open and convex, and d ∈ D(C), a function H : Rn × Rn →
R+∪{+∞} is called the induced proximal distance to d if H is finite valued on C×C and for each
x, y ∈ C satisfies the following properties:

(H1) H(x, x) = 0;

(H2) ⟨z − y,∇1d(y, x)⟩ ≤ H(z, x)−H(z, y), z ∈ C.

We write (d,H) ∈ Φ(C) to quantify the triple [C, d,H] that satisfies the premises of Defini-
tion 2.3. Similarly, we write (d,H) ∈ Φ(C̄) for the triple [C̄, d,H] whenever there exists H, which
is finite valued on C̄ × C, satisfies (H1)-(H2) for any z ∈ C, and is such that z ∈ C̄ has H(z, ·)
level bounded on C. Clearly, one has Φ(C̄) ⊂ Φ(C). For examples and a thorough discussion
about proximal and induced proximal distances see, for instance, [1, 3].

3 The Algorithm and Convergence Analysis
Let C ⊂ Rn be an open nonempty convex set. From now on, f : Rn → R is a lower semicontinu-

ous bounded below DC function and g, h : Rn → R are lower semicontinuous and convex functions
such that f(x) = g(x)− h(x). In addition, in all further results, assume that (d,H) ∈ Φ+(C). To
solve the problem of finding a critical point of f on C̄, we will study the following algorithm:

Algorithm 1
Let λk > 0, k ∈ N. Start from a point x0 ∈ C and generates a sequence {xk} ⊂ C satisfying

vk ∈ ∂g(xk), wk ∈ ∂h(xk),

xk+1 ∈ argmin
{
λk⟨vk − wk, z⟩+ d(z, xk) | z ∈ C

}
.

The existence of {xk} ⊂ C of Algorithm 1 is guaranteed by using similar arguments as in the
proof of [1, Proposition 2.1]. Then, from optimality conditions, we obtain

λk(v
k − wk) +∇1d(x

k+1, xk) = 0, k ∈ N. (2)

Next we present an important result to our convergence analysis.

Proposition 3.1. Set βk := ⟨∇1d(x
k+1, xk), xk+1−xk⟩ and assume that h is strongly convex with

modulus ρ. Then for all k ∈ N, βk ≥ 0. Furthermore, assume that there exists a positive constant
κ satisfying

∂g(x) ⊂ ∂g(y) + κ∥x− y∥B ∀x, y ∈ C, (3)

where B denotes the closed unit ball in Rn. Then,

f(xk)− f(xk+1) ≥ (ρ− κ)
∥∥xk − xk+1

∥∥2 + βk

λk
, k ∈ N. (4)

Besides, if λk ≤ λ+, k ∈ N and ρ > κ, we have
∑

k βk < ∞.

Proof. From (H2), with z = x = xk, y = xk+1, and taking into account that H(xk, xk) = 0, we
obtain

H(xk, xk+1) ≤ ⟨xk+1 − xk,∇1d(x
k+1, xk)⟩, k ∈ N. (5)

Since H(xk, xk+1) ≥ 0, we have that βk ≥ 0, k ∈ N. Now, let us prove (4). First, in view of (2),
we have

λk(v
k − wk) +∇1d(x

k+1, xk) = 0, k ∈ N. (6)
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Since xk ∈ C for all k ≥ 0, we can use (3), to obtain

∂g(xk) ⊂ ∂g(xk+1) + κ
∥∥xk − xk+1

∥∥B, k ∈ N.

Taking into account that vk ∈ ∂g(xk), last inclusion implies that there exist uk ∈ ∂g(xk+1) and
bk ∈ B satisfying

vk = uk + κ
∥∥xk − xk+1

∥∥ bk, k ∈ N. (7)

From convexity of g,
g(xk) ≥ g(xk+1) + ⟨uk, xk − xk+1⟩, k ∈ N.

Now, combining last inequality with (7), we obtain

g(xk) ≥ g(xk+1) + ⟨vk, xk − xk+1⟩ − κ
∥∥xk − xk+1

∥∥ ⟨bk, xk − xk+1⟩, k ∈ N.

Consequently, from (6), we have

g(xk) ≥ g(xk+1)− 1

λk
⟨∇1d(x

k+1, xk), xk − xk+1⟩

+ ⟨wk, xk − xk+1⟩ − κ
∥∥xk − xk+1

∥∥ ⟨bk, xk − xk+1⟩, k ∈ N.

Since βk = ⟨∇1d(x
k+1, xk), xk+1 − xk⟩, we have

g(xk) ≥ g(xk+1) + ⟨wk, xk − xk+1⟩

− κ
∥∥xk − xk+1

∥∥ ⟨bk, xk − xk+1⟩+ βk

λk
, k ∈ N.

On the other hand, as h is strongly convex with modulus ρ > 0, we have

h(xk+1) ≥ h(xk) + ⟨wk, xk+1 − xk⟩+ ρ
∥∥xk − xk+1

∥∥2 , k ∈ N. (8)

Then, we obtain

g(xk) ≥ g(xk+1) + h(xk)− h(xk+1)− κ
∥∥xk − xk+1

∥∥ ⟨bk, xk − xk+1⟩

+ ρ∥xk − xk+1∥2 + βk

λk
, k ∈ N.

Using Cauchy–Schwartz inequality, we have

g(xk)− h(xk) ≥ g(xk+1)− h(xk+1) + (ρ− κ)
∥∥xk − xk+1

∥∥2 + βk

λk
, k ∈ N.

Finally, since f(x) = g(x) − h(x) we obtain (4). The fact that
∑

βk < ∞, follows immediately
from (4), and from the fact that f is bounded below.

Remark 3.1. Assumption (3) refers to the Lipschitz property of subdifferential ∂g. This is a
commonly used condition in gradient-type algorithms.

The forthcoming result is crucial to our work.

Lemma 3.1. Let {λk} be a sequence of positive numbers, {ak} a sequence of real numbers, and
bn := σ−1

n

∑n
k=1 λkak, where σn :=

∑n
k=1 λk. If σn → ∞, lim inf an ≤ lim inf bn ≤ lim sup bn ≤

lim sup an.

Proof. See Lemaire [7], Lemma 3.5, and also [2], Lemma 2.3.
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Theorem 3.1. Under all the assumptions of Proposition 3.1, suppose that λk ≥ λ− > 0, k ∈ N.
If {xk} is generated by Algorithm 1, its accumulation points, if any, are critical points of f in C̄.

Proof. Let x̄ be an accumulation point of {xk} and let {xkj} a subsequence of {xk} such that
limj→∞ xkj = x̄. From Algorithm 1, vkj ∈ ∂g(xkj ) and wkj ∈ ∂h(xkj ). Now, due do (4), we obtain
that limj→∞ xkj+1 = x̄. Then, we can use [10, Theorem 9.13] and, without loss of generality, we
can assume that {vkj} and {wkj} converge to v̄ and w̄ respectively. Now, consider any y0 ∈ C̄
fixed. Based on (2),

⟨vk − wk, y0 − xk⟩ = − 1

λk
⟨∇1d(x

k+1, xk), y0 − xk⟩, k ∈ N.

Then, tanking into account that βk := ⟨∇1d(x
k+1, xk), xk+1 − xk⟩, we have

⟨vk − wk, y0 − xk⟩ = − 1

λk
⟨∇1d(x

k+1, xk), y0 − xk+1⟩ − βk

λk
, k ∈ N. (9)

From (H2), with z = y0, y = xk+1, x = xk, we obtain

⟨y0 − xk+1,∇1d(x
k+1, xk)⟩ ≤ H(y0, x

k)−H(y0, x
k+1), k ∈ N. (10)

Combining the last inequality with (9), for all k ≥ 0 we obtain

H(y0, x
k)−H(y0, x

k+1) + βk ≥ −λk⟨vk − wk, y0 − xk⟩.

Summing the last inequality over k = 1, . . . , n, for all k ≥ 0 we have

H(y0, x
1)−H(y0, x

n+1) +

n∑
k=1

βk ≥
n∑

k=1

λk

(
−⟨vk − wk, y0 − xk⟩

)
.

Since H(·, ·) ≥ 0, for all k ≥ 0 we obtain

σ−1
n H(y0, x

1) + σ−1
n

n∑
k=1

βk ≥ σ−1
n

n∑
k=1

λk

(
−⟨vk − wk, y0 − xk⟩

)
,

where σn :=
∑n

k=1 λk. As λk ≥ λ−, then σn → ∞, and considering that
∑∞

k=1 ϵk < ∞, we can use
Lemma 3.1 to obtain lim supk→+∞⟨vk − wk, y0 − xk⟩ ≥ 0. Since ∂g and ∂h are closed, we obtain
v̄ ∈ ∂g(x̄) and w̄ ∈ ∂h(x̄). Thus, last inequality imples that ⟨v̄ − w̄, y0 − x̄⟩ ≥ 0, for all y0 ∈ C̄.
Therefore x̄ ∈ S∗

C̄
(f).

Lemma 3.2. Under all the assumptions of Proposition 3.1, suppose furthermore that g is strongly
convex with modulus γ > 0, h is continuously differentiable and ∇h is L–Lipschitz continuous on
C. Consider any x̄ ∈ S∗

C̄
(f). Then the following hold:

H(x̄, xk+1) + λk(γ − L)∥xk − x̄∥2 ≤ H(x̄, xk) + βk, k ∈ N. (11)

Proof. Take any x̄ ∈ S∗
C̄
(f) and let v ∈ ∂g(x̄) be such that, for all y ∈ C,

⟨v −∇h(x̄), y − x̄⟩ ≥ 0.

Let us prove (11). Since {xk} ⊂ C, we obtain ⟨v, xk − x̄⟩ ≥ ⟨∇h(x̄), xk − x̄⟩, k ∈ N. Since g is
strongly convex with modulus γ, we have γ∥xk − x̄∥2 ≤ ⟨xk − x̄, vk − v⟩, k ∈ N. Consequently,
γ∥xk − x̄∥2 ≤ ⟨xk − x̄, vk −∇h(x̄)⟩, k ∈ N. From (2),

γ∥xk − x̄∥2 ≤ − 1

λk
⟨xk − x̄,∇1d(x

k+1, xk)⟩+ ⟨xk − x̄,∇h(xk)−∇h(x)⟩, k ∈ N.
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Taking into account that βk = ⟨∇1d(x
k+1, xk), xk+1 − xk⟩, for all k ∈ N,

γ∥xk − x̄∥2 ≤ βk

λk
− 1

λk
⟨xk+1 − x̄,∇1d(x

k+1, xk)⟩+ ⟨xk − x̄,∇h(xk)−∇h(x̄)⟩.

As ∇h is L–Lipschitz continuous on C and using Cauchy-Schwarz, we obtain

γ∥xk − x̄∥2 ≤ βk

λk
+

1

λk
⟨x̄− xk+1,∇1d(x

k+1, xk)⟩+ L∥xk − x̄∥2, k ∈ N.

Again using (H2), with z = x̄, y = xk+1, x = xk, we have

⟨x̄− xk+1,∇1d(x
k+1, xk)⟩ ≤ H(x̄, xk)−H(x̄, xk+1), k ∈ N. (12)

Hence, we can combine the last two inequalities to obtain (11).

To set the convergence of any sequence generated by Algorithm 1, we need to make further
assumptions on the induced proximal distance H, which were also considered in [1]. Let (d,H) ∈
Φ+(C̄) ⊂ Φ(C̄) be such that the function H satisfies the following two additional properties: For
y ∈ C̄ and {yk} ⊂ C,

(Ha) limk→+∞ yk = y, whenever {yk} is bounded and limk→+∞ H(y, yk) = 0;

(Hb) limk→+∞ H(y, yk) = 0, whenever limk→+∞ yk = y.

We also make the following assumption:

S∗
C̄(f) ̸= ∅. (13)

Under these assumptions, we prove that Algorithm 1 converges to a Clarke critical of f .
Before we introduce the main result of the present work, we recall the following well-known

result of nonnegative sequences.

Lemma 3.3. Let {uk}, {αk}, and {βk} be nonnegative sequences of real numbers satisfying uk+1 ≤
(1 + αk)u

k + βk such that
∑

k αk < ∞ and
∑

k βk < ∞. Then, the sequence {uk} converges.

Proof. See Lemma 2 on page 44 by Polyak [9].

Theorem 3.2. Under all assumptions of Lemma 3.2, suppose that 0 < λ− ≤ λk ≤ λ+, k ∈ N and
γ > L+ 1/2. If {xk} is generated by Algorithm 1, then it converges to a Clarke critical point of f
in C̄.

Proof. In view of (13), take any x ∈ S∗
C̄
(f). As γ > L+1/2, Lemma 3.2 implies that, H(x, xk+1) ≤

H(x, xk) + βk, and H(x, xk+1) ≤ H(x, xk) + αk, for all k ∈ N. As
∑

k αk < ∞, and thanks to
Proposition 3.1 (ii), in both cases, we can apply Lemma 3.3 we conclude that {H(x, xk)} converges
to some point β(x). Let x∗ be an accumulation point of {xk}. From Theorem 3.1, x∗ ∈ S∗

C̄
(f).

Based on (Ha), we obtain limℓ→+∞ H(x∗, xkℓ) = 0. Considering that {H(x, xk)} converges, we
conclude that limk→+∞ H(x∗, xk) = 0. Now, by (Hb) it follows that {xk} converges to x∗.
Therefore, from Theorem 3.1, x∗ is a Clarke critical point of f in C̄, which proves the theorem.
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4 Final Remarks
In this paper, we present an interior subgradient and a proximal linearized method for DC

programming, whose regularization term is a proximal distance. Based on the methods presented
in [1], we prove that any accumulation point of a sequences generated by the algorithm is a critical
point, where the strong convexity of one of the components of the main function played a vital
role in this analysis. Finally, with some additional assumptions, we prove that the whole sequence
generated by the method converges to a Clarke-critical point. Our motivation in this paper is to
increase the interest in this research field, intending that these results will inspire others to seek
knowledge and make science stronger. In future research, we intend to investigate this kind of
problem in more general settings as in Riemann Manifolds and Multi-objective Optimization. We
foresee further progress in this topic shortly.
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