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Abstract. Given the ongoing study of formulations and stabilizing methods for constitutive mod-
els, this work discusses the stability analysis of a particular case of a new discretization scheme.
The proposed scheme is based on a reformulation of the upper-convected time derivative. This
reformulation is over a Lagrangian framework and uses the generalized Lie derivative. The stability
analysis is carried out for the first-order scheme and shows that the scheme supports the CFL type
restriction, proving to be viable for numerical simulations.
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1 Introduction
A variety of viscoelastic fluids are modeled by constitutive equations that have the upper-

convected time derivative term, such as Oldroyd-B [12] or Geisekus [5]. There exists a constant
search in the area of simulation of viscoelastic fluid flows, to improve the numerical stability related
to models and their dimensionless parameters [1, 7]. Furthermore, there are still discussions about
the mathematical construction of viscoelastic models [6].

Based on the works [8, 9], a reformulation of the upper-convected time derivative term was pro-
posed by [10, 11] to allow the study of the numerical instabilities that plague the area. The studies
involve the generalized Lie derivative (GLD) [9], and use the concept of a transition matrix based
upon particle paths, to reformulate the upper-convected time derivative along its characteristics.

Considering the good results for the truncation error analysis [11], and the ease of extending the
method to compute High Weissenberg Number Problems (HWNP), this work performs the stability
analysis for a particular one-dimensional case of the scheme proposed by [10, 11]. However, when
solving differential equations numerically, it is necessary to discretize the continuous domain and
continuous functions by a finite set of discrete values [2, 4].

This discretization introduces errors into the solution, and it is important to understand how
these errors propagate over time and how they affect the accuracy of the numerical solution.
Numerical stability studies aim to prevent small errors from causing incorrect or meaningless
results in numerical approximations. A stable numerical method produces solutions that remain
bounded and do not exhibit significant amplification of errors as the computation progresses.

The present work is organized with the presentation of the GLD for the one-dimensional case,
the development of the first-order finite difference scheme based on [11], and the results obtained
by the stability analysis of the proposed numerical scheme.
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2 Equations
Let Ω ⊂ R be a bounded domain and T a positive constant. Let T : Ω× [0, T ] → R be a scalar

function and u : Ω × [0, T ] → R a given smooth function for velocity. We consider the following
one-dimensional problem:

▽

T(x, t) = F (x, t), in Ω× [0, T ], (1a)

T(x, t) = T0(x), in Ω, at t = 0, (1b)
T(x, t) = Tin(x, t), in ∂Ω× [0, T ], (1c)

where
▽

T is the one-dimensional representation of the upper-convected time derivative, given by:

▽

T(x, t) =
∂T(x, t)

∂t
+ u(x, t)

∂T(x, t)

∂x
− 2

∂u(x, t)

∂x
T(x, t). (2)

The function F (x, t) is the source term, T0(x) is the initial condition, and Tin(x, t) the boundary
condition. In this notation, T(x, t) is defined in an Eulerian framework.

To introduce the Lagrangian framework and the GLD, we will assume that the flow map
X(x, t; s) ∈ R, for time instants t, s ∈ (0, T ), satisfies the ordinary differential equation (ODE)
and the initial condition stated below:

∂X(x, t; s)

∂s
= u(X(x, t; s), s), s ∈ (0, T ), (3a)

X(x, t; t) = x, (x, t) ∈ Ω× (0, T ). (3b)

Related to the problem (3a-3b), we shall also consider the transition matrix L(x, t; ·) : Ω× (0, T )×
(0, T ) → R, defined in [9–11].

The L(x, t, s) is the transition matrix between two-time instants t and s, a particular case of
the gradient deformation of flow maps, and has the following properties, one-dimensional case: for
all t1, t2 ∈ [0, T ]

L(x, t1, t2)L(x, t2, t1) = L(x, t1, t1) = 1, (4a)
∂L(x, t1, s)

∂s
=

∂u (X(x, t1; s), s)

∂x
L(x, t1, s), (4b)

∂L(x, s, t1)

∂s
= −L(x, s, t1)

∂u (X(x, t; s), s)

∂x
. (4c)

The generalized Lie derivative on a Lagrangian framework can now be defined as follows.

Definition 2.1. The generalized Lie derivative of a scalar function T with respect to some function u,
in a Lagrangian framework, is

LuT
(
X(x, t; s), s

)
:= L(x, t, s)

∂

∂s

[
L(x, s, t)T

(
X(x, t; s), s

)
L(x, s, t)

]
L(x, t, s). (5)

Note that the GLD can be interpreted from an Eulerian point of view. To do this, we just take
the derivative of the product of functions in Definition 2.1, apply the properties of the transition
matrices, and finally set s = t. Then, the GLD equation (5) in the Eulerian framework can be

rewritten as: LuT
(
X(x, t; s), s

)∣∣∣
s=t

=
▽

T(x, t) (for more details, cf. [9, 10]). Therefore, equation
(1a) may be rewritten as:

LuT
(
X(x, t; s), s

)
= F (x, t), in Ω× [0, T ]. (6)

Thus, we are able to solve an equivalent problem to (1), given by equations (6), (1b) and (1c).
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3 Numerical Scheme
In this section, we discuss first-order implicit numerical approximations for our problem. Let

the integer NT be the number of time discretization points and ∆t be the time step, related to NT

by NT := ⌊T/∆t⌋. For convenience of notation, we write tn := n∆t and fn := f(·, tn) (n ∈ N) for
some function f : Ω× (0, T ).

The term LuT(x, t; s) in Definition 2.1, can be approximated by a first-order implicit Euler
method in time:

LuT
(
X(x, t; s), s

)
≈ L(x, t, s)

1

∆t

[
L(x, s, t)T

(
X(x, t; s), s

)
L(x, s, t)−

L(x, s−∆t, t)T
(
X(x, t; s−∆t), s−∆t

)
L(x, s−∆t, t)

]
L(x, t, s). (7)

Assuming s = t = n∆t, then:

LuT
(
X(x, tn; tn), tn

)
≈ L(x, tn, tn)

1

∆t

[
L(x, tn, tn)T

(
X(x, tn; tn), tn

)
L(x, tn, tn)−

L(x, tn−1, tn)T
(
X(x, tn; tn−1), tn−1

)
L(x, tn−1, tn)

]
L(x, tn, tn), (8)

from the first property of the transition matrices and from the ODE initial condition (3b):

LuT (x, tn) ≈ 1

∆t

[
T
(
x, tn

)
−

L(x, tn−1, tn)T
(
X(x, tn; tn−1), tn−1

)
L(x, tn−1, tn)

]
. (9)

For convenience, let’s consider the third property of transition matrices (4c) and apply a first-
order implicit Euler method to approximate the term L(x, tn−1, tn). That is,

∂L(x, s, tn)

∂s

∣∣∣
s=tn

= −L(x, s, tn)
∂u (X(x, tn; s), s)

∂x

∣∣∣
s=tn

L(x, tn, tn)− L(x, tn−1, tn)

∆t
≈ −L(x, tn, tn)

∂u (X(x, tn; tn), tn)

∂x
.

L(x, tn−1, tn) ≈ L(x, tn, tn) + L(x, tn, tn)∆t
∂u (x, tn)

∂x

L(x, tn−1, tn) ≈ 1 + ∆t
∂u (x, tn)

∂x
. (10)

Thus, substituting the approximation of L(x, tn−1, tn) given by (10), in the proposed scheme
(9), we obtain:

LuT (x, tn) ≈ 1

∆t

[
T
(
x, tn

)
−

−
[
1 + ∆t

∂u (x, tn)

∂x

]
T
(
X(x, tn; tn−1), tn−1

) [
1 + ∆t

∂u (x, tn)

∂x

]]
(11)

Finally, the temporal approximation for the problem given by (6), becomes:

T
(
x, tn

)
≈

[
1 + ∆t

∂u (x, tn)

∂x

]
·
[
T
(
X(x, tn−1), tn−1

)]
·
[
1 + ∆t

∂u (x, tn)

∂x

]
+∆tF (x, tn) . (12)

The domain Ω = [a, b] is discretized by a spatial Eulerian mesh, where the nodes are xi =
a+ i∆x, for i = 0, 1, 2, . . . , Nx, and ∆x = (b− a)/Nx. The notation fn

i := f(xi, t
n) is going to be

used for a function f : Ω× (0, T ).
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Let’s assume that the map value X(xi, t
n; tn−1) belongs to one of the sub-intervals of the mesh,

that is, X(xi, t
n; tn−1) ∈ [xl, xl+1], for some l = 0, 1, 2, . . . , Nx−1. For the term T

(
X(xi, t

n; tn−1), tn−1
)

in the approximation, we choose the linear interpolation of the tensor T at time tn−1, in some
sub-interval mesh.

Thus, we approximate the term T
(
X(xi, t

n; tn−1), tn−1
)

by:

T
(
X(xi, t

n; tn−1), tn−1
)
= Tn−1

l ϕl(X(xi, t
n; tn−1)) + Tn−1

l+1 ϕl+1(X(xi, t
n; tn−1)), (13)

where the functions ϕl and ϕl+1 are hat functions, cf. [11]. Therefore, the complete discretization
given by equations (12) and (13) provides the following numerical scheme:

Tn
i ≈

[
1 + ∆t

∂u

∂x

∣∣∣n
i

]2
·
[
Tn−1

l ϕl(X(xi, t
n; tn−1)) + Tn−1

l+1 ϕl+1(X(xi, t
n; tn−1))

]
+∆tFn

i . (14)

Furthermore, we will take X(xi, t
n; tn−1) given by the ODE (3), and it’s numerical approxima-

tion:
X(xi, t

n; tn−1) = xi −∆tun
i . (15)

4 Stability Analysis
To study the stability of the numerical scheme given by (14), we use the matrix criterion. So, we

evaluate the iteration matrix A associated with the scheme, considering the homogeneous problem
(F (x, t) = 0).

To determine the iteration matrix we apply the proposed method to the entire domain, for
some mesh with space size h = ∆x, and write the full scheme as:

Tn
h = ATn−1

h , (16)

where Tn
h = (Tn

0 , T
n
1 , . . . , T

n
Nx

)⊤ represents the approximate solution vector in the nodes of the
spatial mesh and each coefficient aij of matrix A can be written as:

aij =


[
1 + ∆t∂u∂x

∣∣∣n
i

]2
ϕj(X(xi, t

n; tn−1)), if X(xi, t
n; tn−1) ∈ [xj−1, xj+1],

0, otherwise,
(17)

for i = 0, 1, . . . , Nx. Note that from (14), for each row i we have only columns l and l + 1 with
non-zero values. If we have a boundary value problem then a11 = aNxNx

= 1 and the remaining
terms in lines 1 and Nx are zero.

When we rewrite this same method using a known exact solution T, we have:

Tn = ATn−1 + τh, (18)

where Tn = (T(x0, t
n),T(x1, t

n), . . . ,T(xNx
, tn))⊤ is the exact solution in the nodes of the spatial

mesh at time tn, and τh is the local truncation error. To obtain a relation between the local
truncation error and the global error (En

h = Tn
h − Tn), we subtract equation (18) from (16) and

we get:
En

h = AEn−1
h − τh. (19)

Note that, for known values of the boundary and initial conditions we have that E(x, t)|∂Ω = 0
and E(x, 0) = E0 = 0, respectively. Furthermore, each coefficient aij of matrix A related to some
variable En−1

j remains defined by (17).
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If the proposed scheme is stable, then the magnitude of the error En
h on (19) are not amplified

during the evolution of the simulation, on the contrary, the rounding and truncation errors are
attenuated during the simulation process.

Note that, the iteration matrix A is sparse by construction. Depending on the velocity function
u and the time step ∆t taken, the matrix A can have only 2 neighboring non-zero entries (from
(14) and (17)). Hence, the matrix A can be constructed having at its main diagonal the values 0,

1, or
[
1 + ∆t∂u∂x

∣∣∣n
i

]2
ϕj(X(xi, t

n; tn−1)), and then its eigenvalues are the main diagonal elements.
We know that the numerical method is stable if the eigenvalues λi, for i = 0, 1, . . . , Nx, are

such that |λi| ≤ 1, for all i. The following Theorem presents a result for the stability analysis by
the matrix criterion based on [2], for the 1D specific case of this work with the iteration matrix
given by (17).

Theorem 4.1. Let be Ω = [a, b] ⊂ R, t, s, tn, tn−1 ∈ [0, T ], u = u(x, t) a smooth non-constant
function, and assume that the flow map X(x, t; s) ∈ [a, b] satisfies the ODE (3). Then, the first-
order scheme given by (14), is stable if, and only if∣∣∣1 + ∆t

∂u

∂x

∣∣∣n
i

∣∣∣2ϕj

(
X(xi, t

n; tn−1)
)
≤ 1, ∀xi ∈ [a, b],

where i = 0, 1, . . . , Nx, j = 0, 1, . . . , Nx − 1 and n = 1, . . . , NT .

To prove the Theorem 4.1, it is enough to verify that |λi| =
∣∣∣1 +∆t∂u∂x

∣∣∣n
i

∣∣∣2ϕj

(
X(xi, t

n; tn−1)
)
,

or λi = 1, where λi is an eigenvalue of the method’s iteration matrix. Then, the definition of
stability by the matrix criterion (cf. Definition 3.1, [2]), completes the proof.

Note that the base function 0 ≤ ϕj(xi) ≤ 1, i = 0, 1, . . . , Nx, then Theorem 4.1 can be rewritten,
without loss of generality, as:

Theorem 4.2. Let be Ω = [a, b] ⊂ R, t, s, tn, tn−1 ∈ [0, T ], u = u(x, t) a smooth non-constant
function, and assume that the flow map X(x, t; s) ∈ [a, b] satisfies the ODE (3). Then, the first-
order scheme given by (14), is stable if, and only if

−2

∆t
<

∂un
i

∂x
< 0, or

∆t un
i

∆x
< 1,

where X(xi, t
n; tn−1) ≈ xi − ∆tu(xi, t

n), and u(xi, t
n) = un

i , for all i = 0, 1, . . . , Nx, and n =
1, . . . , NT .

Proof. (idea)
Let’s suppose that the scheme (12) and (13) is applied to a homogeneous problem.
Note that 0 ≤ ϕj(x) ≤ 1, ∀x ∈ [a, b], and then from Theorem 4.1, we have:∣∣∣1 + ∆t

∂un
i

∂x

∣∣∣2ϕj

(
X(xi, t

n; tn−1)
)
≤ 1.

Supposing that ϕj(x) = 0,∀x ∈ [a, b], then we have a stable scheme.
If ϕj(xi) = 1, for some xi ∈ [a, b], for a stable scheme we should have

−2

∆t
<

∂un
i

∂x
< 0.

In the other hand, let’s suppose that the hat function ϕj(xi) ∈ (0, 1), and xi ∈ [a, b]. Checking
this statement, let’s consider u(xi, t

n) a positive velocity field and X(xi, t
n; tn−1) ≈ xi−∆tu(xi, t

n),
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such that

xi −∆x < xi −∆tu(xi, t
n) < xi

⇔ −∆x < −∆tu(xi, t
n) < 0

⇔ ∆x > ∆tu(xi, t
n) > 0,

as ∆t, ∆x > 0, then:

1 >
∆tu(xi, t

n)

∆x
,

that is,

C =
∆tun

i

∆x
< 1, (20)

where the dimensionless number C is called the Courant number [2, 4]. If the relation (20) holds
for all i = 0, . . . , Nx, then there exists a velocity u such that our constraint coincides with the CFL
condition:

∆t u

∆x
< 1.

Note that, if the velocity derivative is negative but too large in absolute value, i.e., if
∣∣∣∆t∂u∂x

∣∣∣ > 2,
it may result in eigenvalues > 1, which makes the numerical scheme unstable.

In particular, if the velocity field is constant we can have a simpler case of numerical stability
analysis, as presented in the corollary below.

Corollary 4.1. In the same conditions of the Theorem 4.2, where u = u(x, t) = f(t) ∈ R, i.e.,
for a constant velocity field for the x−variable, we have that the first-order scheme (14) is absolute
stable.

Corollary 4.1 is easily checked. If the velocity field in 1D is a constant function for the
x−variable, we have its first derivative equal to zero (∂u∂x = 0, ∀x ∈ [a, b]), and the hat func-
tions are defined such that 0 ≤ ϕj(x) ≤ 1, for all x ∈ Ω, then the numerical scheme will be stable
for any x ∈ Ω.

5 Conclusion
The stability analysis carried out allows us to observe which conditions of the problem provide

us a stable method. Thus, our method is said to be conditionally stable, depending on the velocity
field u or the choice of time step.

It is interesting to note that, for a more general case, when the flow map does not fall at a
point of the mesh, and we have a positive velocity field, we verify that the proposed method is
restricted to the CFL condition, the same condition observed for methods for hyperbolic equa-
tions[3, 4]. Therefore, the proposed method does not add more severe temporal constraints than
other methods.
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