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Abstract. This work presents a general form for a two-dimensional, mean-zero, homogeneous,
stationary, incompressible, and isotropic random velocity field which is written as a sum of many
Fourier modes. We assume that the Lagrangian auto-covariance function can be written as a Taylor
series and then we develop a methodology to evaluate such Taylor coefficients. Additionally, we
identify a notable pattern in terms associated with the highest moments of the random magnitudes
for each order. We analyze the convergence of the Taylor series formed only by those terms.
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1 Introduction
An important problem in statistical fluid mechanics is to obtain the statistical descriptions of

the motion of a single particle in a random velocity field. Considering the passive tracer transport
problem as a simpler case, which involves determining the law of the entire stochastic location
process Xt, t ≥ 0, of a single particle at time t ≥ 0, which is moved by a random velocity field
U when the motion of the particle itself does not affect the random velocity field. Even for this
problem, given the law of the random velocity field U, we still have limited ability to produce
theoretical general results for the location process Xt. For references, see [1, 2, 6, 7]. In other
words, we can formulate the passive tracer problem as a stochastic initial value problem as below.

Let U = {U (x, t) ,x ∈ R2, t ≥ 0} be a random velocity field, and let Xt be the particle position
at time t ≥ 0. So, Xt, t ≥ 0, is the solution of the differential equation of the motion given by

dXt

dt
= U(Xt, t), t > 0; X0 = 0. (1)

The main goal is determining the law of the entire stochastic location process Xt, t ≥ 0, given the
law of the random velocity field U.

Closely related to the passive tracer problem is the task of determining the law of the Lagrangian
velocity process U(Xt, t), t ≥ 0, which represents the particle’s velocity as observed by an observer
whose location Xt is determined by the environment. The Eulerian description provided by U(x, t),
where the coordinate system is fixed, differs from the Lagrangian description U(Xt, t), which offers
a description of the velocity field from the perspective of a particle following the velocity field.

For this article we take a two-dimensional, mean-zero, homogeneous, stationary, and incom-
pressible velocity field written as a sum of finitely many Fourier modes as

U(x, t) =
1√
N

N∑
n=1

Rn sin(Wn ·x+Φn)Θn, x ∈ R2, (2)

with Θn = W⊥
n = [−Wn,2,Wn,1]

T , where Wn = [Wn,1,Wn,2]
T , for n = 1, 2, . . . , N , and random

amplitudes Rn and random wave numbers Wn are independent of the random phases Φn, in the
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sense that the collection (R1,W1, R2,W2, · · · , RN ,WN ) is independent of (Φ1,Φ2, . . . ,ΦN ). In
addition, we assume that the random phases Φn, n = 1, 2, . . . , N , are independent and uniformly
distributed on [0, 2π], and random vectors (Rn,Wn), n = 1, 2, . . . , N have finite joint moments.

Remark 1.1. In previous works [3, 5], we used trigonometric velocity fields, as in Eq. (2), to
derive statistical properties of such random fields. Specifically, we constructed Gaussian random
fields and presented numerical evidence that the joint distribution of (U(0, 0),U(Xt, t)), for each
t > 0, is not Gaussian, even for such Gaussian fields. Additionally, we obtained the first terms of
the Taylor expansion for the Lagrangian auto-covariance function, which is an important statistical
characteristic of the Lagrangian velocity process U(Xt, t), t ≥ 0.

For this work, we consider more specialized random fields, namely isotropic fields, by assuming
an additional hypothesis upon the form of random wave numbers Wn, n = 1, 2, . . . , N . Isotropic
fields have no preferred direction in U(x, t) or, to be more precise, the statistical distribution of
U(x, t) is not affected by all possible rotations passing through the origin. This assumption allows
us to derive additional theoretical results and make conjectures about the convergence of the Taylor
expansion for the Lagrangian auto-covariance function.

2 Isotropic Random Fields
Suppose that each random wave number Wn, for n = 1, 2, . . . , N , can be written as a product

of its magnitude times a vector living in the unit circle, that is,

Wn = Mn

[
cos(Ψn)
sin(Ψn)

]
, n = 1, 2, . . . , N, (3)

where Mn = ∥Wn∥, for n = 1, 2, . . . , N , is the random magnitude, and Ψn, for n = 1, 2, . . . , N , is
the random wave number angle. Moreover, assume that random vector (Rn,Mn) is independent
of Ψn, for all n = 1, 2, . . . , N , and (Ψ1,Ψ2, . . . ,ΨN ) is a collection of independent and uniformly
distributed random variables on [0, 2π].

Remark 2.1. Notice that we still allow some dependence between random amplitudes Rn and
random magnitude Mn, for n = 1, 2, . . . , N . But both random variables Rn and Mn are independent
of the wave number angle Ψn, for n = 1, 2, . . . , N .

Theorem 2.1. Let U(x, t) be a velocity field as defined in Eq.(2). Additionally, assume that each
random wave number is as defined in Eq.(3). Then, the velocity field U(x, t) is isotropic, meaning
that the covariation matrix Cov(U(x, t),U(y, t)) depends on x,y ∈ R2 only through ∥x− y∥, which
does not depend on angles.

Proof. For details, see [4].

3 The Lagrangian Auto-Covariance Function
Let us start with the definition and some properties of the Lagrangian auto-covariation function.

Definition 3.1. Let s′, t′ ≥ 0 be real numbers. We define the Lagrangian auto-covariance of U by

ΣL(s
′, t′) = E

[
U(Xs′ , s

′)U(Xt′ , t
′)T

]
, (4)

where Xt satisfies the equation of the motion and the initial condition according to Eq.(1).

Remark 3.1. Let U(x, t) be defined as in Eq. (2). Then the stochastic process U(Xt, t), t ≥ 0, is
stationary. Consequently, the Lagrangian auto-covariance depends only on the difference t = t′−s′,
allowing us to express the Lagrangian auto-covariance as a function of t ≥ 0 as ΣL(s

′, t′) = ΣL(t).
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Figure 1: Tree diagram T with branches up to order 4. Source: Author.

Remark 3.2. Taylor coefficients C(m) for the Lagrangian auto-correlation function are given by

C(m) =
1

m!

1

Nm/2+1

∑
p∈P

∑
i∈T

E [Gp
i (R,W)]E [F p

i (S,C)] , m = 0, 1, . . . , (5)

where p = (p1, p2, . . . , pm+2) ∈ P with P = {1, 2, . . . , N}m+2, i = (i3, . . . , im+2) is a multi-index
which ranges over the routes from the root of the tree T to the leaves (see Figure 1), Ki is the product
of factors along branch i, Gp

i (R,W) = Rp1
· · ·Rpm+2

Θp1
ΘT

p2
Ki is a function of random amplitudes

and wave numbers, and F p
i (S,C) = Sp1

Di(Sp2
· · ·Spm+1

)Spm+2
is a function of random phases, for

each i ∈ T . Since we are evaluating at t = 0, the abbreviation Spj
now equals sin(Φpj

) and Cpj

equals cos(Φpj ). For the case when we assume that random vectors (Rn,Wn), for n = 1, 2, . . . , N ,
are identically distributed and the number of Fourier modes N → ∞, then Eq.(5) simplifies to

C(m) =
1

m!

∑
i∈T

∑
p∈D

E [Gp
i (R,W)] E [F p

i (S,C)] , (6)

which does not depend on the number of Fourier modes N. For details, see [4].

Notice factors E [Gp
i (R,W)] as in Eq.(6) depend on random wave-numbers Wn, n = 1, 2, . . . , N .

More explicitly, E [Gp
i (R,W)] = E

[
Rp1Rp2 · · ·Rpm+2Θp1Θ

T
p2
Kp3

pi1
Kp4

pi2
· · ·Kpm+2

pim

]
, i ∈ T . Moreover,

we can express the matrix product Θp1Θp
T
2 and each factor Ks

r , r, s = 1, 2, . . . , N, using random
magnitudes and random wave number angles as in Eq.(3), to get

E [Gp
i (R,W)] = E [RMp1

Mp2
M]E

[[
sin(Ψp1

) sin(Ψp2
) − sin(Ψp1

) cos(Ψp2
)

− cos(Ψp1
) sin(Ψp2

) cos(Ψp1
) cos(Ψp2

)

]
T

]
, (7)

which is a squared 2× 2 matrix, where R = Rp1
Rp2

· · ·Rpm+2
is a product of random amplitudes,

M = Mpi1
Mp3

Mpi2
Mp4

· · ·Mpim
Mpm+2

is the product of random magnitudes from each factor
K

pr+2
pir

, for r = 1, 2, . . . ,m, and T = T1T2 · · ·Tm = sin(Ψp3
pi1

) sin(Ψp4
pi2

) · · · sin(Ψpm+2
pim

) is the product
of sines of the angle between wave numbers Wpir

and Wpr+2 , for r = 1, 2, . . . ,m, i ∈ T and p ∈ D.

Theorem 3.1. Let m > 0 be an even number. Then each factor E [Gp
i (R,W)] as in Eq.(7) is a

diagonal squared matrix, and so is the Lagrangian auto-covariance function.

Proof. For details, see [4].
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Remark 3.3. Notice that we only need moments involving even powers of the random amplitudes
Rn and random magnitudes Mn, for n = 1, 2, . . . ,m/2 + 1, to evaluate expressions as in Eq.(7).
In fact, as p ∈ D, then factors as Rp1

Rp2
· · ·Rpm+2 become R2

p1
R2

p2
· · ·R2

pm/2+1
.

Remark 3.4. Notice that, given i ∈ T and p ∈ D, we can evaluate the numerical value of factors

E
[
Υp2

p1
T
]
= E

[[
sin(Ψp1) sin(Ψp2) − sin(Ψp1) cos(Ψp2)

− cos(Ψp1
) sin(Ψp2

) cos(Ψp1
) cos(Ψp2

)

]
T

]
, (8)

in Eq.(7), since Ψn, for n = 1, 2, . . . ,m/2+1, are independent and uniformly distributed on [0, 2π].

3.1 Symbolic Expressions for Taylor Coefficients
We developed and implemented a computational procedure to obtain symbolic expressions

for higher-order derivatives of the Lagrangian auto-correlation function evaluated at t = 0, see [5].
Ultimately, this procedure yields the Taylor coefficients as described in Eq.(6). In fact, we obtained
symbolic expressions for terms such as E [Gp

i (R,W)]E [F p
i (S,C)]. Moreover, notice that the sum

on the right-hand side of Eq.(5) has (m+ 1)(m− 1) · · · 1 ·m! terms, which does not depend on N .
Assuming that the random variables (R1,W1), . . . , (RN ,WN ) are independent and identically

distributed. This allows us to recognize that as we sum over p1, . . . , pm+2 going from 1 to N , many
of the terms have the same numerical values.

Example 3.1. Using Eq. (6) to evaluate the fourth-order Taylor coefficient, we need to collect 360
terms since T has 24 elements and D has 15 elements. However, many of these terms are 0. In
fact, after listing all non-zero terms, we can relabel some indices and sort factors to group similar
terms. Finally, we end up with a list having only 4 distinct terms, as shown in Figure 2.

Symbolic expressions for distinct terms for m=4:
line 1: 0 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^3)(K_2^3)(K_2^3)(K_2^3)] * E[S1^2]^3
line 2: 1 * E[R1^2 R2^2 R3^2 * Theta_1^1 * (K_1^2)(K_1^2)(K_2^3)(K_2^3)] * E[S1^2]^3
line 3: 3 * E[R1^2 R2^2 R3^2 * Theta_1^1 * (K_1^2)(K_1^2)(K_1^3)(K_1^3)] * E[S1^2]^3
line 4: -5 * E[R1^2 R2^2 R3^2 * Theta_1^2 * (K_1^2)(K_1^2)(K_1^3)(K_2^3)] * E[S1^2]^3
-----------------------------------------------------------------------------------------------------------------------------------------------------------------

Figure 2: Computer output of distinct terms for m = 4. Source: Author.

Remark 3.5. The symbolic expressions in Figure 2 depend on the joint distribution of the random
variables (Rn,Wn) and the numerical value of E

[
S2
1

]
. To calculate numerically, recognize that the

Theta∗∗ factors and K∗
∗ depend on wave numbers Wn. One can multiply these out, use linearity

to separate out terms, then use independence of the (Rn,Wn) to get a product of expected values.
This reduces the computation to joint moments of Rn and Wn, n = 1, 2, . . . ,m/2+1. The highest
moment encountered will be E

[
R2

1|W1|m+2
]
. Therefore, the methodology we use to obtain Taylor

coefficients for the Lagrangian auto-covariance is quite general and allows us to explore a large
variety of scenarios by changing the joint distribution of random amplitudes and wave numbers.

Assuming the isotropic condition, described as in Eq.(3), we can split expectations involving
random amplitudes Rn and random magnitudes Mn from random wave number angles Ψn, for
n = 1, 2, . . . ,m/2 + 1, according to Eq.(7). Moreover, Theorem 3.1 tells us E [Gp

i (R,W)] is a
diagonal matrix. Hence, it remains to determine explicitly an expression for the main diagonal
terms in order to obtain an expression for Taylor coefficients of the Lagrangian auto-covariance.
In fact, the wave number angles Ψn, for n = 1, 2, . . . ,m/2 + 1, are independent and uniformly
distributed on [0, 2π], from which we can conclude that the main diagonal terms are all equal.

Remark 3.6. In expressions as in Figure 3, we can determine expectations involving random wave
number angles and random phases since these variables are independent and uniformly distributed
on [0, 2π]. So we can evaluate numerically the last two expectations factors in each expression.
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Symbolic expressions for non-null distinct terms for m=4:
line 1: 1 * E[R1^2 R2^2 R3^2 * M1^4 M2^4 M3^2] * E[S1 S1 (S_1^2)(S_1^2)(S_2^3)(S_2^3)] * E[S1^2]^ 3
line 2: 3 * E[R1^2 R2^2 R3^2 * M1^6 M2^2 M3^2] * E[S1 S1 (S_1^2)(S_1^2)(S_1^3)(S_1^3)] * E[S1^2]^ 3
line 3: -5 * E[R1^2 R2^2 R3^2 * M1^4 M2^4 M3^2] * E[S1 S1 (S_1^2)(S_1^2)(S_1^3)(S_2^3)] * E[S1^2]^ 3
-----------------------------------------------------------------------------------------------------------------------------------------------------------------

Figure 3: Computer output of distinct terms for m = 4 for the isotropic case. Source: Author.

Remark 3.7. Terms in lines 1 and 3 in Figure 3 have the same factor involving random amplitudes
and magnitudes. Moreover, according to Remark 3.6, we can evaluate the last two expectations to
obtain the terms as in Figure 4. Therefore, in order to evaluate the fourth-order Taylor coefficient,
we need to determine two more distinct expectations involving random amplitudes and magnitudes.

(a) Symbolic expressions for non-null distinct terms for m=4: (b) Symbolic expressions for non-null distinct terms for m=4:
line 1: -0.03125000 * E[R1^2 R2^2 R3^2 * M1^4 M2^4 M3^2] -> -0.03125000 * E[M1^4] E[M2^4] E[M3^2]
line 2: 0.37500000 * E[R1^2 R2^2 R3^2 * M1^6 M2^2 M3^2] -> 0.37500000 * E[M1^6] E[M2^2] E[M3^2]
-----------------------------------------------------------------------------------------------------------------------------------------------------------------

Figure 4: Computer output for terms depending on random amplitudes and magnitudes. Source: Author.

Remark 3.8. Notice that we can assign different distributions to the random variables of the
model, which allows us to obtain numerically the Taylor coefficients without any simulations. This
illustrates how robust this methodology is. So we can calculate the Lagrangian auto-correlation for
distinct setups quickly, which ultimately ends up being far faster than Monte Carlo simulations.

Assuming that random amplitudes Rn and random magnitudes Mn are independent allows us
to split expectations in the expressions shown in Figure 4(a), which initially can depend on the joint
distribution of (R1,M1, . . . , Rm/2+1,Mm/2+1). Additionally, assuming that random amplitudes are
deterministic and equal to 1, that is, P(Rn = 1) = 1, for n = 1, 2, . . . ,m/2 + 1, and wave number
magnitudes Mn are independent and identically distributed for n = 1, 2, . . . ,m/2 + 1, then such
expressions depend only on even moments of the random magnitude Mn, for n = 1, 2, . . . ,m/2+1,
as shown in Figure 4(b). We are able to evaluate the Taylor coefficients of the Lagrangian auto-
correlation numerically once we properly assign the distribution of the random magnitude M1.

Remark 3.9. In Figure Figure 4(b), notice that the expressions represent the terms of the fourth-
order derivative of the Lagrangian auto-correlation at t = 0. To obtain the Taylor coefficient of
the fourth-order, we need to add these two terms together and then multiply by 1/4!, as indicated
in Eq.(5). Figure 5 presents a complete list of terms for the Taylor expansion up to order m = 10.
We also highlight the highest moment of the random amplitude M1 for each term in this list.

Example 3.2. By assigning different distributions for the random magnitude M1, we can evaluate
many moments of M1 and then assemble approximations for the Taylor expansion and analyze its
behavior for each distribution. In Figure 6, for example, we set two different distributions for M1:
(a) where the random magnitude M1 is constant and equal to 1, and (b) where M1 is uniformly
distributed on [0, 2], which means that M1 has mean 1 in both cases.

Remark 3.10. Examining the terms with the highest moments of the random magnitude M1, for
each order m in Figure 5, we observe the coefficients are c0 = 0.5, c2 = −0.25 = −0.5 · 0.5, . . . ,
and c10 = −14.765625 = −0.5 · 0.5 · 1.5 · 2.5 · 3.5 · 4.5. This observation allows us to conjecture that

am = (−1)m/20.5

m/2∏
j=1

2j − 1

2
, (9)

revealing a clear pattern for coefficients associated with the highest moments of M1.
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terms for 00-order coefficient
E[M1^02]: 0,50000000 * E[M1^( 2)]
terms for 02-order coefficient
E[M1^04]: -0.25000000 * E[M1^( 4)] * E[M1^( 2)]
terms for 04-order coefficient
E[M1^04]: -0.03125000 * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 2)]
E[M1^06]: 0.37500000 * E[M1^( 6)] * E[M1^( 2)] * E[M1^( 2)]
terms for 06-order coefficient
E[M1^04]: -0.09375000 * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 2)]
E[M1^06]: -0.28125000 * E[M1^( 6)] * E[M1^( 4)] * E[M1^( 2)] * E[M1^( 2)]
E[M1^08]: -0.93750000 * E[M1^( 8)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)]
terms for 08-order coefficient
E[M1^04]: 2.87695313 * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 2)]
E[M1^06]: 1.82812500 * E[M1^( 6)] * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 2)] * E[M1^( 2)]
E[M1^06]: -1.21875000 * E[M1^( 6)] * E[M1^( 6)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)]
E[M1^08]: 7.26562500 * E[M1^( 8)] * E[M1^( 4)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)]
E[M1^10]: 3.28125000 * E[M1^(10)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)]
terms for 10-order coefficient
E[M1^04]: -1.76074219 * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 2)]
E[M1^06]: -126.50976563 * E[M1^( 6)] * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 2)] * E[M1^( 2)]
E[M1^06]: -0.77343750 * E[M1^( 6)] * E[M1^( 6)] * E[M1^( 4)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)]
E[M1^08]: -71.48437500 * E[M1^( 8)] * E[M1^( 4)] * E[M1^( 4)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)]
E[M1^08]: -2.34375000 * E[M1^( 8)] * E[M1^( 6)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)]
E[M1^10]: -88.59375000 * E[M1^(10)] * E[M1^( 4)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)]
E[M1^12]: -14.76562500 * E[M1^(12)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)] * E[M1^( 2)]
-----------------------------------------------------------------------------------------------------------------------------------------------------------------

Figure 5: Computer output for terms for the Taylor expansion up to order 10. Source: Author.

(a) M1 constant with mean 1 (b) M1 uniform with mean 1

Figure 6: Graphs for Taylor approximations. Source: Author.

3.2 About the Convergence of the Taylor Expansion
We will continue to examine terms with the highest power of M1 in each Taylor coefficient for

the Lagrangian auto-covariance function, as they are most influenced by how heavy of the tail of
M1 is. These terms occur when p1 = p2 = 1 and K2

1K
2
1K

3
1K

3
1 . . .K

m/2
1 K

m/2
1 K

m/2+1
1 K

m/2+1
1 , and

the total number of terms with these factors is (m−1)(m−3) · · · 3 ·1, for each even number m ≥ 2.

Remark 3.11. Note that taking the ratio between terms E
[
Θ1Θ

T
1 K

2
1K

2
1K

3
1K

3
1 . . .K

m/2+1
1 K

m/2+1
1

]
in modulus, for decreasing and successive orders m+ 2 and m we get

(m+ 1)(m− 1)(m− 3) . . . 3

(m− 1)(m− 3) . . . 3

E
[
Mm+4

1

]
E
[
M2

1

]m/2+1

E
[
Mm+2

1

]
E [M2

1 ]
m/2

2m/2+1

2m/2+2
=

m+ 1

2

E
[
Mm+4

1

]
E
[
M2

1

]
E
[
Mm+2

1

] , (10)

which matches with the pattern analyzed and established in the Remark (3.10).

Let us define a new Taylor series, formed by terms associated to the highest moments of the
random amplitudes, which are associated with factors E

[
Θ1Θ

T
1 K

2
1K

2
1K

3
1K

3
1 . . .K

m/2+1
1 K

m/2+1
1

]
,

for each m ≥ 2, as in Eq.(5). Set

Σ′(t) =

∞∑
m=2

m even

C
′(m)
Σ tm =

∞∑
m=2

m even

(−1)m/2 1

(m/2)!

1

2(3m+4)/2
E
[
Mm+2

1

]
E
[
M2

1

]m/2
tm. (11)
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Let ρ > 0 be the modulus of the ratio between decreasing and successive Taylor terms of Σ′L(t).
We can use Eq.(10) to obtain a simplified expression:

ρ =

∣∣∣∣∣C ′(m+2)
Σ tm+2

C
′(m)
Σ tm

∣∣∣∣∣ = 1

4

1

m+ 2

E
[
Mm+4

1

]
E
[
M2

1

]
E
[
Mm+2

1

] t2. (12)

Then, the Taylor series Σ′(t) converges if ρ < 1 as m → ∞. In other words, we have a condition
on even moments of M1 that guarantees the convergence of a Taylor series formed only by terms
corresponding to the highest moments of M1 in the expression of the Lagrangian auto-covariance.

Example 3.3. Assuming that random wave number magnitude M1 is deterministic and constant
equal to 1, that is, P(M1 = 1) = 1. In this case, Eq.(12) leads us to

ρ =
1

4

1

m+ 2

1m+412

1m+2
t2 =

1

4

1

m+ 2
t2, (13)

which goes to 0 as m → ∞, for all t > 0. Therefore, the Taylor series Σ′(t) converges for all t ≥ 0.

4 Conclusion
In this work, we start with two-dimensional, mean-zero, homogeneous, stationary, and incom-

pressible velocity fields expressed as a sum of finitely many Fourier modes. We establish conditions
on the parameters of the model to obtain isotropic fields. We derive a few theoretical results about
these random fields, particularly some concerning their Lagrangian auto-covariance function.

Assuming that the Lagrangian auto-correlation function can be represented as a Taylor series,
we employ an appropriate programming language to obtain terms for small derivative orders and
express them as symbolic expressions. We demonstrate the robustness of this methodology through
several examples. Moreover, we identify some patterns, that allows us to analyze the convergence
of a Taylor series formed by terms involving only the highest moments of the random magnitudes.
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